def forward(self, anchors, objectness, box_regression, targets=None): """ Arguments: anchors: list[list[BoxList]] objectness: list[tensor] box_regression: list[tensor] Returns: boxlists (list[BoxList]): the post-processed anchors, after applying box decoding and NMS """ sampled_boxes = [] num_levels = len(objectness) anchors = list(zip(*anchors)) for a, o, b in zip(anchors, objectness, box_regression): sampled_boxes.append(self.forward_for_single_feature_map(a, o, b)) boxlists = list(zip(*sampled_boxes)) boxlists = [cat_boxlist(boxlist) for boxlist in boxlists] if num_levels > 1: boxlists = self.select_over_all_levels(boxlists) # append ground-truth bboxes to proposals if self.training and targets is not None: boxlists = self.add_gt_proposals(boxlists, targets) return boxlists
def filter_results(self, boxlist, num_classes): """Returns bounding-box detection results by thresholding on scores and applying non-maximum suppression (NMS). """ # unwrap the boxlist to avoid additional overhead. # if we had multi-class NMS, we could perform this directly on the boxlist boxes = boxlist.bbox.reshape(-1, num_classes * 4) scores = boxlist.get_field("scores").reshape(-1, num_classes) logits = boxlist.get_field("logits").reshape(-1, num_classes) ## BoxList => boxlist features = boxlist.get_field("features") device = scores.device result = [] # Apply threshold on detection probabilities and apply NMS # Skip j = 0, because it's the background class inds_all = scores > self.score_thresh for j in range(1, num_classes): inds = inds_all[:, j].nonzero().squeeze(1) scores_j = scores[inds, j] features_j = features[inds] boxes_j = boxes[inds, j * 4 : (j + 1) * 4] boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy") boxlist_for_class.add_field("scores", scores_j) boxlist_for_class.add_field("features", features_j) boxlist_for_class = boxlist_nms( boxlist_for_class, self.nms ) num_labels = len(boxlist_for_class) boxlist_for_class.add_field( "labels", torch.full((num_labels,), j, dtype=torch.int64, device=device) ) result.append(boxlist_for_class) result = cat_boxlist(result) number_of_detections = len(result) # Limit to max_per_image detections **over all classes** if number_of_detections > self.detections_per_img > 0: cls_scores = result.get_field("scores") image_thresh, _ = torch.kthvalue( cls_scores.cpu(), number_of_detections - self.detections_per_img + 1 ) keep = cls_scores >= image_thresh.item() keep = torch.nonzero(keep).squeeze(1) result = result[keep] return result
def select_over_all_levels(self, boxlists): num_images = len(boxlists) results = [] for i in range(num_images): scores = boxlists[i].get_field("scores") labels = boxlists[i].get_field("labels") boxes = boxlists[i].bbox boxlist = boxlists[i] result = [] # skip the background for j in range(1, self.num_classes): inds = (labels == j).nonzero().view(-1) scores_j = scores[inds] boxes_j = boxes[inds, :].view(-1, 4) boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy") boxlist_for_class.add_field("scores", scores_j) boxlist_for_class = boxlist_nms( boxlist_for_class, self.nms_thresh, score_field="scores" ) num_labels = len(boxlist_for_class) boxlist_for_class.add_field( "labels", torch.full((num_labels,), j, dtype=torch.int64, device=scores.device) ) result.append(boxlist_for_class) result = cat_boxlist(result) number_of_detections = len(result) # Limit to max_per_image detections **over all classes** if number_of_detections > self.fpn_post_nms_top_n > 0: cls_scores = result.get_field("scores") image_thresh, _ = torch.kthvalue( cls_scores.cpu(), number_of_detections - self.fpn_post_nms_top_n + 1 ) keep = cls_scores >= image_thresh.item() keep = torch.nonzero(keep).squeeze(1) result = result[keep] results.append(result) return results
def __call__(self, anchors, objectness, box_regression, targets): """ Arguments: anchors (list[BoxList]) objectness (list[Tensor]) box_regression (list[Tensor]) targets (list[BoxList]) Returns: objectness_loss (Tensor) box_loss (Tensor """ anchors = [ cat_boxlist(anchors_per_image) for anchors_per_image in anchors ] labels, regression_targets = self.prepare_targets(anchors, targets) sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels) sampled_pos_inds = torch.nonzero(torch.cat(sampled_pos_inds, dim=0)).squeeze(1) sampled_neg_inds = torch.nonzero(torch.cat(sampled_neg_inds, dim=0)).squeeze(1) sampled_inds = torch.cat([sampled_pos_inds, sampled_neg_inds], dim=0) objectness, box_regression = \ concat_box_prediction_layers(objectness, box_regression) objectness = objectness.squeeze() labels = torch.cat(labels, dim=0) regression_targets = torch.cat(regression_targets, dim=0) box_loss = smooth_l1_loss( box_regression[sampled_pos_inds], regression_targets[sampled_pos_inds], beta=1.0 / 9, size_average=False, ) / (sampled_inds.numel()) objectness_loss = F.binary_cross_entropy_with_logits( objectness[sampled_inds], labels[sampled_inds]) return objectness_loss, box_loss
def __call__(self, anchors, box_cls, box_regression, targets): """ Arguments: anchors (list[BoxList]) box_cls (list[Tensor]) box_regression (list[Tensor]) targets (list[BoxList]) Returns: retinanet_cls_loss (Tensor) retinanet_regression_loss (Tensor """ anchors = [ cat_boxlist(anchors_per_image) for anchors_per_image in anchors ] labels, regression_targets = self.prepare_targets(anchors, targets) N = len(labels) box_cls, box_regression = \ concat_box_prediction_layers(box_cls, box_regression) labels = torch.cat(labels, dim=0) regression_targets = torch.cat(regression_targets, dim=0) pos_inds = torch.nonzero(labels > 0).squeeze(1) retinanet_regression_loss = smooth_l1_loss( box_regression[pos_inds], regression_targets[pos_inds], beta=self.bbox_reg_beta, size_average=False, ) / (max(1, pos_inds.numel() * self.regress_norm)) labels = labels.int() retinanet_cls_loss = self.box_cls_loss_func( box_cls, labels) / (pos_inds.numel() + N) return retinanet_cls_loss, retinanet_regression_loss
def add_gt_proposals(self, proposals, targets): """ Arguments: proposals: list[BoxList] targets: list[BoxList] """ # Get the device we're operating on device = proposals[0].bbox.device gt_boxes = [target.copy_with_fields([]) for target in targets] # later cat of bbox requires all fields to be present for all bbox # so we need to add a dummy for objectness that's missing for gt_box in gt_boxes: gt_box.add_field("objectness", torch.ones(len(gt_box), device=device)) proposals = [ cat_boxlist((proposal, gt_box)) for proposal, gt_box in zip(proposals, gt_boxes) ] return proposals
def forward(self, features, proposals, targets=None): """ Arguments: features (list[Tensor]): feature-maps from possibly several levels proposals (list[BoxList]): proposal boxes targets (list[BoxList], optional): the ground-truth targets. Returns: x (Tensor): the result of the feature extractor proposals (list[BoxList]): during training, the subsampled proposals are returned. During testing, the predicted boxlists are returned losses (dict[Tensor]): During training, returns the losses for the head. During testing, returns an empty dict. """ if self.training and self.use_gt_boxes: # augment proposals with ground-truth boxes targets_cp = [target.copy_with_fields(target.fields()) for target in targets] with torch.no_grad(): x = self.box_feature_extractor(features, targets_cp) class_logits, box_regression = self.box_predictor(x) boxes_per_image = [len(proposal) for proposal in targets_cp] target_features = x.split(boxes_per_image, dim=0) for proposal, target_feature in zip(targets_cp, target_features): proposal.add_field("features", self.box_avgpool(target_feature)) proposals_gt = self.box_post_processor((class_logits, box_regression), targets_cp, skip_nms=True) proposals = [cat_boxlist([proposal, proposal_gt]) for (proposal, proposal_gt) in zip(proposals, proposals_gt)] if self.training: # Faster R-CNN subsamples during training the proposals with a fixed # positive / negative ratio if self.cfg.MODEL.USE_RELPN: proposal_pairs, loss_relpn = self.relpn(proposals, targets) else: proposal_pairs = self.loss_evaluator.subsample(proposals, targets) else: with torch.no_grad(): if self.cfg.MODEL.USE_RELPN: proposal_pairs, relnesses = self.relpn(proposals) else: proposal_pairs = self.loss_evaluator.subsample(proposals) if self.cfg.MODEL.USE_FREQ_PRIOR: """ if use frequency prior, we directly use the statistics """ x = None obj_class_logits = None _, obj_labels, im_inds = _get_tensor_from_boxlist(proposals, 'labels') _, proposal_idx_pairs, im_inds_pairs = _get_tensor_from_boxlist(proposal_pairs, 'idx_pairs') rel_inds = _get_rel_inds(im_inds, im_inds_pairs, proposal_idx_pairs) pred_class_logits = self.freq_bias.index_with_labels( torch.stack((obj_labels[rel_inds[:, 0]],obj_labels[rel_inds[:, 1]],), 1)) else: # extract features that will be fed to the final classifier. The # feature_extractor generally corresponds to the pooler + heads x, obj_class_logits, pred_class_logits, obj_class_labels, rel_inds = \ self.rel_predictor(features, proposals, proposal_pairs) # TODO(cjrd) each image hits this state -- we'll extract the features somewhere in here # import ipdb; ipdb.set_trace() if self.use_bias: pred_class_logits = pred_class_logits + self.freq_bias.index_with_labels( torch.stack(( obj_class_labels[rel_inds[:, 0]], obj_class_labels[rel_inds[:, 1]], ), 1)) if not self.training: result = self.post_processor((pred_class_logits), proposal_pairs, use_freq_prior=self.cfg.MODEL.USE_FREQ_PRIOR) # ---------------------------------- COLO ADD - extract features for downstream applications (from grcnn.py) ------------------# if self.cfg.TEST.SAVE_INTERMEDIATE_FEATURES: try: obj_feats, pred_feats = self.rel_predictor.get_transformed_features(features, proposals, proposal_pairs) top_idxs = pred_class_logits.max(1)[0] if top_idxs.numel() >= self.cfg.TEST.INTERMEDIATE_FEATURES_TOPK_RELS: top_rels_idx = top_idxs.topk(self.cfg.TEST.INTERMEDIATE_FEATURES_TOPK_RELS)[1] top_rel_feats = pred_feats[0][top_rels_idx,:] result[0].add_field("top_rel_feats", top_rel_feats) except Exception as e: print("Error determining intermediate features: {}".format(e)) #------------------------------------------------------------------------------------------------------------------------------# # TODO investiate this model structure # import ipdb; ipdb.set_trace() # if self.cfg.MODEL.USE_RELPN: # for res, relness in zip(result, relnesses): # res.add_field("scores", res.get_field("scores") * relness.view(-1, 1)) return x, result, {} loss_obj_classifier = 0 if obj_class_logits is not None: loss_obj_classifier = self.loss_evaluator.obj_classification_loss(proposals, [obj_class_logits]) if self.cfg.MODEL.USE_RELPN: idx = obj_class_labels[rel_inds[:, 0]] * 151 + obj_class_labels[rel_inds[:, 1]] freq_prior = self.freq_dist.view(-1, 51)[idx].cuda() loss_pred_classifier = self.relpn.pred_classification_loss([pred_class_logits], freq_prior=freq_prior) return ( x, proposal_pairs, dict(loss_obj_classifier=loss_obj_classifier, loss_relpn = loss_relpn, loss_pred_classifier=loss_pred_classifier), ) else: loss_pred_classifier = self.loss_evaluator([pred_class_logits]) return ( x, proposal_pairs, dict(loss_obj_classifier=loss_obj_classifier, loss_pred_classifier=loss_pred_classifier), )
def forward(self, features, proposals, targets=None): """ Arguments: features (list[Tensor]): feature-maps from possibly several levels proposals (list[BoxList]): proposal boxes targets (list[BoxList], optional): the ground-truth targets. Returns: x (Tensor): the result of the feature extractor proposals (list[BoxList]): during training, the subsampled proposals are returned. During testing, the predicted boxlists are returned losses (dict[Tensor]): During training, returns the losses for the head. During testing, returns an empty dict. """ if self.training and self.use_gt_boxes: # augment proposals with ground-truth boxes targets_cp = [ target.copy_with_fields(target.fields()) for target in targets ] with torch.no_grad(): x = self.box_feature_extractor(features, targets_cp) class_logits, box_regression = self.box_predictor(x) boxes_per_image = [len(proposal) for proposal in targets_cp] target_features = x.split(boxes_per_image, dim=0) for proposal, target_feature in zip(targets_cp, target_features): proposal.add_field("features", self.box_avgpool(target_feature)) proposals_gt = self.box_post_processor( (class_logits, box_regression), targets_cp, skip_nms=True) proposals = [ cat_boxlist([proposal, proposal_gt]) for (proposal, proposal_gt) in zip(proposals, proposals_gt) ] if self.training: # Faster R-CNN subsamples during training the proposals with a fixed # positive / negative ratio if self.cfg.MODEL.USE_RELPN: proposal_pairs, loss_relpn = self.relpn(proposals, targets) else: proposal_pairs = self.loss_evaluator.subsample( proposals, targets) else: with torch.no_grad(): if self.cfg.MODEL.USE_RELPN: proposal_pairs, relnesses = self.relpn(proposals) else: proposal_pairs = self.loss_evaluator.subsample(proposals) if self.cfg.MODEL.USE_FREQ_PRIOR: """ if use frequency prior, we directly use the statistics """ x = None obj_class_logits = None _, obj_labels, im_inds = _get_tensor_from_boxlist( proposals, 'labels') _, proposal_idx_pairs, im_inds_pairs = _get_tensor_from_boxlist( proposal_pairs, 'idx_pairs') rel_inds = _get_rel_inds(im_inds, im_inds_pairs, proposal_idx_pairs) pred_class_logits = self.freq_bias.index_with_labels( torch.stack(( obj_labels[rel_inds[:, 0]], obj_labels[rel_inds[:, 1]], ), 1)) else: # extract features that will be fed to the final classifier. The # feature_extractor generally corresponds to the pooler + heads x, obj_class_logits, pred_class_logits, obj_class_labels, rel_inds = \ self.rel_predictor(features, proposals, proposal_pairs) if self.use_bias: pred_class_logits = pred_class_logits + self.freq_bias.index_with_labels( torch.stack(( obj_class_labels[rel_inds[:, 0]], obj_class_labels[rel_inds[:, 1]], ), 1)) if not self.training: # NOTE: if we have updated object class logits, then we need to update proposals as well!!! # if obj_class_logits is not None: # boxes_per_image = [len(proposal) for proposal in proposals] # obj_logits = obj_class_logits # obj_scores, obj_labels = obj_class_logits[:, 1:].max(1) # obj_labels = obj_labels + 1 # obj_logits = obj_logits.split(boxes_per_image, dim=0) # obj_scores = obj_scores.split(boxes_per_image, dim=0) # obj_labels = obj_labels.split(boxes_per_image, dim=0) # for proposal, obj_logit, obj_score, obj_label in \ # zip(proposals, obj_logits, obj_scores, obj_labels): # proposal.add_field("logits", obj_logit) # proposal.add_field("scores", obj_score) # proposal.add_field("labels", obj_label) result = self.post_processor( (pred_class_logits), proposal_pairs, use_freq_prior=self.cfg.MODEL.USE_FREQ_PRIOR) # if self.cfg.MODEL.USE_RELPN: # for res, relness in zip(result, relnesses): # res.add_field("scores", res.get_field("scores") * relness.view(-1, 1)) return x, result, {} loss_obj_classifier = 0 if obj_class_logits is not None: loss_obj_classifier = self.loss_evaluator.obj_classification_loss( proposals, [obj_class_logits]) if self.cfg.MODEL.USE_RELPN: idx = obj_class_labels[rel_inds[:, 0]] * 151 + obj_class_labels[ rel_inds[:, 1]] freq_prior = self.freq_dist.view(-1, 51)[idx].cuda() loss_pred_classifier = self.relpn.pred_classification_loss( [pred_class_logits], freq_prior=freq_prior) return ( x, proposal_pairs, dict(loss_obj_classifier=loss_obj_classifier, loss_relpn=loss_relpn, loss_pred_classifier=loss_pred_classifier), ) else: loss_pred_classifier = self.loss_evaluator([pred_class_logits]) return ( x, proposal_pairs, dict(loss_obj_classifier=loss_obj_classifier, loss_pred_classifier=loss_pred_classifier), )