def _get_child_configer_transform(self, child_config_file):

        dataset_configer = Configer(configs=child_config_file)
        child_configer = self.configer.clone()

        child_configer.params_root['data'].update(dataset_configer.get('data'))

        if self.configer.exists(
                'use_adaptive_transform') or self.dataset == 'val':
            child_configer.params_root.update({
                'train_trans':
                dataset_configer.params_root['train_trans'],
                'val_trans':
                dataset_configer.params_root['val_trans'],
            })

        return child_configer, CV2AugCompose(split=self.dataset,
                                             configer=child_configer)
示例#2
0
    args_parser = parser.parse_args()

    from lib.utils.distributed import handle_distributed
    handle_distributed(args_parser,
                       os.path.expanduser(os.path.abspath(__file__)))

    if args_parser.seed is not None:
        random.seed(args_parser.seed)
        torch.manual_seed(args_parser.seed)

    cudnn.enabled = True
    cudnn.benchmark = args_parser.cudnn

    configer = Configer(args_parser=args_parser)
    data_dir = configer.get('data', 'data_dir')
    if isinstance(data_dir, str):
        data_dir = [data_dir]
    abs_data_dir = [os.path.expanduser(x) for x in data_dir]
    configer.update(['data', 'data_dir'], abs_data_dir)

    project_dir = os.path.dirname(os.path.realpath(__file__))
    configer.add(['project_dir'], project_dir)

    if configer.get('logging', 'log_to_file'):
        log_file = configer.get('logging', 'log_file')
        new_log_file = '{}_{}'.format(
            log_file, time.strftime("%Y-%m-%d_%X", time.localtime()))
        configer.update(['logging', 'log_file'], new_log_file)
    else:
        configer.update(['logging', 'logfile_level'], None)
示例#3
0
    args_parser = parser.parse_args()

    from lib.utils.distributed import handle_distributed
    handle_distributed(args_parser,
                       os.path.expanduser(os.path.abspath(__file__)))

    if args_parser.seed is not None:
        random.seed(args_parser.seed)
        torch.manual_seed(args_parser.seed)

    cudnn.enabled = True
    cudnn.benchmark = args_parser.cudnn

    configer = Configer(args_parser=args_parser)
    abs_data_dir = os.path.expanduser(configer.get('data', 'data_dir'))
    configer.update(['data', 'data_dir'], abs_data_dir)

    project_dir = os.path.dirname(os.path.realpath(__file__))
    configer.add(['project_dir'], project_dir)

    if configer.get('logging', 'log_to_file'):
        log_file = configer.get('logging', 'log_file')
        new_log_file = '{}_{}'.format(
            log_file, time.strftime("%Y-%m-%d_%X", time.localtime()))
        configer.update(['logging', 'log_file'], new_log_file)
    else:
        configer.update(['logging', 'logfile_level'], None)

    Log.init(logfile_level=configer.get('logging', 'logfile_level'),
             stdout_level=configer.get('logging', 'stdout_level'),
                        default=False,
                        dest='distributed',
                        help='Use CUDNN.')

    args_parser = parser.parse_args()

    if args_parser.seed is not None:
        random.seed(args_parser.seed + args_parser.local_rank)
        torch.manual_seed(args_parser.seed + args_parser.local_rank)
        if args_parser.gpu is not None:
            torch.cuda.manual_seed_all(args_parser.seed +
                                       args_parser.local_rank)

    configer = Configer(args_parser=args_parser)
    cudnn.enabled = True
    if configer.get('data', 'multiscale') is None:
        cudnn.benchmark = args_parser.cudnn
    else:
        cudnn.benchmark = False

    if configer.get('gpu') is not None and not configer.get('distributed',
                                                            default=False):
        os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(
            str(gpu_id) for gpu_id in configer.get('gpu'))

    if configer.get('network', 'norm_type') is None:
        configer.update('network.norm_type', 'batchnorm')

    if torch.cuda.device_count() <= 1 or configer.get('distributed',
                                                      default=False):
        configer.update('network.gather', True)
示例#5
0
    args_parser = parser.parse_args()

    from lib.utils.distributed import handle_distributed
    handle_distributed(args_parser,
                       os.path.expanduser(os.path.abspath(__file__)))

    if args_parser.seed is not None:
        random.seed(args_parser.seed)
        torch.manual_seed(args_parser.seed)

    cudnn.enabled = True
    cudnn.benchmark = args_parser.cudnn

    print(args_parser)
    configer = Configer(args_parser=args_parser)
    data_dir = configer.get('data', 'data_dir')
    if isinstance(data_dir, str):
        data_dir = [data_dir]
    abs_data_dir = [os.path.expanduser(x) for x in data_dir]
    configer.update(['data', 'data_dir'], abs_data_dir)

    project_dir = os.path.dirname(os.path.realpath(__file__))
    configer.add(['project_dir'], project_dir)

    if configer.get('logging', 'log_to_file'):
        log_file = configer.get('logging', 'log_file')
        new_log_file = '{}_{}'.format(
            log_file, time.strftime("%Y-%m-%d_%X", time.localtime()))
        configer.update(['logging', 'log_file'], new_log_file)
    else:
        configer.update(['logging', 'logfile_level'], None)
示例#6
0
    # ***********  Params for env.  **********
    parser.add_argument('--seed', default=None, type=int, help='manual seed')
    parser.add_argument('--cudnn', type=str2bool, nargs='?', default=True, help='Use CUDNN.')

    args_parser = parser.parse_args()

    if args_parser.seed is not None:
        random.seed(args_parser.seed)
        torch.manual_seed(args_parser.seed)

    cudnn.enabled = True
    cudnn.benchmark = args_parser.cudnn

    configer = Configer(args_parser=args_parser)
    abs_data_dir = os.path.expanduser(configer.get('data', 'data_dir'))
    configer.update(['data', 'data_dir'], abs_data_dir)

    if configer.get('gpu') is not None:
        os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(gpu_id) for gpu_id in configer.get('gpu'))

    project_dir = os.path.dirname(os.path.realpath(__file__))
    configer.add(['project_dir'], project_dir)

    if configer.get('logging', 'log_to_file'):
        log_file = configer.get('logging', 'log_file')
        new_log_file = '{}_{}'.format(log_file, time.strftime("%Y-%m-%d_%X", time.localtime()))
        configer.update(['logging', 'log_file'], new_log_file)
    else:
        configer.update(['logging', 'logfile_level'], None)