示例#1
0
    def __init__(self, is_training=False, **kwargs):
        super(GCONVRNN, self).__init__(**kwargs)

        self._train_batch_size = int(kwargs['data'].get('batch_size'))
        self._test_batch_size = int(kwargs['data'].get('test_batch_size'))

        self._epoch = int(kwargs['train'].get('epoch'))

        self._logstep = int(kwargs['train'].get('logstep'))

        self._checkpoint_secs = int(kwargs['train'].get('checkpoint_secs'))

        self._data = utils.load_dataset_dcrnn(
            seq_len=self._model_kwargs.get('seq_len'),
            horizon=self._model_kwargs.get('horizon'),
            input_dim=self._model_kwargs.get('input_dim'),
            mon_ratio=self._mon_ratio,
            scaler_type=self._kwargs.get('scaler'),
            is_training=is_training,
            **self._data_kwargs)
        for k, v in self._data.items():
            if hasattr(v, 'shape'):
                self._logger.info((k, v.shape))

        # Build models.
        scaler = self._data['scaler']

        W = self._data['adj_mx']
        laplacian = W / W.max()
        laplacian = scipy.sparse.csr_matrix(laplacian, dtype=np.float32)
        lmax = graph.lmax(laplacian)

        if is_training:
            self._train_model = Model(is_training=True,
                                      laplacian=laplacian,
                                      lmax=lmax,
                                      batch_size=self._train_batch_size,
                                      reuse=True,
                                      **self._model_kwargs)
        else:
            self._test_model = Model(is_training=False,
                                     laplacian=laplacian,
                                     lmax=lmax,
                                     batch_size=self._test_batch_size,
                                     reuse=False,
                                     **self._model_kwargs)

        max_to_keep = self._train_kwargs.get('max_to_keep', 100)

        self.saver = tf.train.Saver(tf.global_variables(),
                                    max_to_keep=max_to_keep)
        self.summary_writer = tf.summary.FileWriter(self._log_dir)

        # Log model statistics.
        total_trainable_parameter = utils.get_total_trainable_parameter_size()
        self._logger.info('Total number of trainable parameters: {:d}'.format(
            total_trainable_parameter))
        for var in tf.global_variables():
            self._logger.debug('{}, {}'.format(var.name, var.get_shape()))
    def __init__(self, **kwargs):

        self._kwargs = kwargs
        self._data_kwargs = kwargs.get('data')
        self._model_kwargs = kwargs.get('model')
        self._train_kwargs = kwargs.get('train')
        self._test_kwargs = kwargs.get('test')

        # logging.
        self._log_dir = self._get_log_dir(kwargs)
        log_level = self._kwargs.get('log_level', 'INFO')
        self._logger = utils.get_logger(self._log_dir, __name__, 'info.log', level=log_level)
        self._writer = tf.summary.FileWriter(self._log_dir)
        self._logger.info(kwargs)

        self._mon_ratio = float(self._kwargs.get('mon_ratio'))

        # Model's args
        self._seq_len = int(self._model_kwargs.get('seq_len'))
        self._horizon = int(self._model_kwargs.get('horizon'))
        self._input_dim = int(self._model_kwargs.get('input_dim'))
        self._nodes = int(self._model_kwargs.get('num_nodes'))

        # Test's args
        self._flow_selection = self._test_kwargs.get('flow_selection')
        self._test_size = self._test_kwargs.get('test_size')
        self._run_times = self._test_kwargs.get('run_times')
        # Data preparation
        self._day_size = self._data_kwargs.get('day_size')
        self._data = utils.load_dataset_dcrnn(seq_len=self._model_kwargs.get('seq_len'),
                                              horizon=self._model_kwargs.get('horizon'),
                                              input_dim=self._model_kwargs.get('input_dim'),
                                              mon_ratio=self._mon_ratio,
                                              **self._data_kwargs)
        for k, v in self._data.items():
            if hasattr(v, 'shape'):
                self._logger.info((k, v.shape))

        # Build models.
        scaler = self._data['scaler']
        with tf.name_scope('Train'):
            with tf.variable_scope('DCRNN', reuse=False):
                self._train_model = DCRNNModel(is_training=True, scaler=scaler,
                                               batch_size=self._data_kwargs['batch_size'],
                                               adj_mx=self._data['adj_mx'], **self._model_kwargs)

        with tf.name_scope('Val'):
            with tf.variable_scope('DCRNN', reuse=True):
                self._val_model = DCRNNModel(is_training=False, scaler=scaler,
                                             batch_size=self._data_kwargs['val_batch_size'],
                                             adj_mx=self._data['adj_mx'], **self._model_kwargs)

        with tf.name_scope('Eval'):
            with tf.variable_scope('DCRNN', reuse=True):
                self._eval_model = DCRNNModel(is_training=False, scaler=scaler,
                                              batch_size=self._data_kwargs['eval_batch_size'],
                                              adj_mx=self._data['adj_mx'], **self._model_kwargs)

        with tf.name_scope('Test'):
            with tf.variable_scope('DCRNN', reuse=True):
                self._test_model = DCRNNModel(is_training=False, scaler=scaler,
                                              batch_size=self._data_kwargs['test_batch_size'],
                                              adj_mx=self._data['adj_mx'], **self._model_kwargs)

        # Learning rate.
        self._lr = tf.get_variable('learning_rate', shape=(), initializer=tf.constant_initializer(0.01),
                                   trainable=False)
        self._new_lr = tf.placeholder(tf.float32, shape=(), name='new_learning_rate')
        self._lr_update = tf.assign(self._lr, self._new_lr, name='lr_update')

        # Configure optimizer
        optimizer_name = self._train_kwargs.get('optimizer', 'adam').lower()
        epsilon = float(self._train_kwargs.get('epsilon', 1e-3))
        optimizer = tf.train.AdamOptimizer(self._lr, epsilon=epsilon, )
        if optimizer_name == 'sgd':
            optimizer = tf.train.GradientDescentOptimizer(self._lr, )
        elif optimizer_name == 'amsgrad':
            optimizer = AMSGrad(self._lr, epsilon=epsilon)

        # Calculate loss
        output_dim = self._model_kwargs.get('output_dim')
        preds = self._train_model.outputs
        labels = self._train_model.labels[..., :output_dim]

        null_val = 0.
        self._loss_fn = masked_mse_loss(scaler, null_val)
        # self._loss_fn = masked_mae_loss(scaler, null_val)
        self._train_loss = self._loss_fn(preds=preds, labels=labels)

        tvars = tf.trainable_variables()
        grads = tf.gradients(self._train_loss, tvars)
        max_grad_norm = kwargs['train'].get('max_grad_norm', 1.)
        grads, _ = tf.clip_by_global_norm(grads, max_grad_norm)
        global_step = tf.train.get_or_create_global_step()
        self._train_op = optimizer.apply_gradients(zip(grads, tvars), global_step=global_step, name='train_op')

        max_to_keep = self._train_kwargs.get('max_to_keep', 100)
        self._epoch = 0
        self._saver = tf.train.Saver(tf.global_variables(), max_to_keep=max_to_keep)

        # Log model statistics.
        total_trainable_parameter = utils.get_total_trainable_parameter_size()
        self._logger.info('Total number of trainable parameters: {:d}'.format(total_trainable_parameter))
        for var in tf.global_variables():
            self._logger.debug('{}, {}'.format(var.name, var.get_shape()))
示例#3
0
    def __init__(self, is_training=False, **kwargs):
        super(DCRNNSupervisor, self).__init__(**kwargs)

        self._data = utils.load_dataset_dcrnn(
            seq_len=self._model_kwargs.get('seq_len'),
            horizon=self._model_kwargs.get('horizon'),
            input_dim=self._model_kwargs.get('input_dim'),
            mon_ratio=self._mon_ratio,
            scaler_type=self._kwargs.get('scaler'),
            is_training=is_training,
            **self._data_kwargs)
        for k, v in self._data.items():
            if hasattr(v, 'shape'):
                self._logger.info((k, v.shape))

        # Build models.
        scaler = self._data['scaler']
        if is_training:
            self.model = DCRNNModel(scaler=scaler,
                                    batch_size=self._data_kwargs['batch_size'],
                                    adj_mx=self._data['adj_mx'],
                                    **self._model_kwargs)
        else:
            self.model = DCRNNModel(scaler=scaler,
                                    batch_size=1,
                                    adj_mx=self._data['adj_mx'],
                                    **self._model_kwargs)

        # Learning rate.
        self._lr = tf.get_variable('learning_rate',
                                   shape=(),
                                   initializer=tf.constant_initializer(0.01),
                                   trainable=False)
        self._new_lr = tf.placeholder(tf.float32,
                                      shape=(),
                                      name='new_learning_rate')
        self._lr_update = tf.assign(self._lr, self._new_lr, name='lr_update')

        # Configure optimizer
        optimizer_name = self._train_kwargs.get('optimizer', 'adam').lower()
        epsilon = float(self._train_kwargs.get('epsilon', 1e-3))
        optimizer = tf.train.AdamOptimizer(
            self._lr,
            epsilon=epsilon,
        )
        if optimizer_name == 'sgd':
            optimizer = tf.train.GradientDescentOptimizer(self._lr, )
        elif optimizer_name == 'amsgrad':
            optimizer = AMSGrad(self._lr, epsilon=epsilon)

        # Calculate loss
        output_dim = self._model_kwargs.get('output_dim')
        preds = self.model.outputs
        labels = self.model.labels[..., :output_dim]

        null_val = 0.
        self._loss_fn = masked_mse_loss(scaler, null_val)
        # self._loss_fn = masked_mae_loss(scaler, null_val)
        self._train_loss = self._loss_fn(preds=preds, labels=labels)

        tvars = tf.trainable_variables()
        grads = tf.gradients(self._train_loss, tvars)
        max_grad_norm = kwargs['train'].get('max_grad_norm', 1.)
        grads, _ = tf.clip_by_global_norm(grads, max_grad_norm)
        global_step = tf.train.get_or_create_global_step()
        self._train_op = optimizer.apply_gradients(zip(grads, tvars),
                                                   global_step=global_step,
                                                   name='train_op')

        max_to_keep = self._train_kwargs.get('max_to_keep', 100)
        self._epoch = 0
        self._saver = tf.train.Saver(tf.global_variables(),
                                     max_to_keep=max_to_keep)

        # Log model statistics.
        total_trainable_parameter = utils.get_total_trainable_parameter_size()
        self._logger.info('Total number of trainable parameters: {:d}'.format(
            total_trainable_parameter))
        for var in tf.global_variables():
            self._logger.debug('{}, {}'.format(var.name, var.get_shape()))