示例#1
0
def main():
    args = get_arguments()
    utils.make_dirs(args.save)
    name_model = args.model + "_" + args.dataset_name + "_" + utils.datestr()

    # TODO visual3D_temp.Basewriter package
    writer = SummaryWriter(log_dir='../runs/' + name_model, comment=name_model)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args, path='.././datasets')
    model, optimizer = medzoo.create_model(args)

    criterion = DiceLoss(classes=11, skip_index_after=args.classes)

    if args.cuda:
        torch.cuda.manual_seed(seed)
        model = model.cuda()
        print("Model transferred in GPU.....")

    print("START TRAINING...")
    for epoch in range(1, args.nEpochs + 1):
        train_stats = train.train_dice(args, epoch, model, training_generator,
                                       optimizer, criterion)

        val_stats = train.test_dice(args, epoch, model, val_generator,
                                    criterion)

        #old
        utils.write_train_val_score(writer, epoch, train_stats, val_stats)

        model.save_checkpoint(args.save,
                              epoch,
                              val_stats[0],
                              optimizer=optimizer)
示例#2
0
def main():
    args = get_arguments()

    utils.reproducibility(args, seed)
    utils.make_dirs(args.save)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args, path='/home/mulns/My_project/VV/MedicalZooPytorch/datasets')
    model, optimizer = medzoo.create_model(args)
    criterion = DiceLoss(classes=args.classes)

    if args.cuda:
        # model=torch.nn.DataParallel(model)
        model = model.cuda()
        print("Model transferred in GPU.....")

    trainer = train.Trainer(args,
                            model,
                            criterion,
                            optimizer,
                            train_data_loader=training_generator,
                            valid_data_loader=val_generator,
                            lr_scheduler=None)
    print("START TRAINING...")
    trainer.training()
示例#3
0
    def get_viz_set(self, test_subject=0):
        """
        Returns total 3d input volumes (t1 and t2 or more) and segmentation maps
        3d total vol shape : torch.Size([1, 144, 192, 256])
        """
        TEST_SUBJECT = test_subject
        path_T1 = self.list_IDsT1[TEST_SUBJECT]
        path_T1ce = self.list_IDsT1ce[TEST_SUBJECT]
        path_T2 = self.list_IDsT2[TEST_SUBJECT]
        path_flair = self.list_IDsFlair[TEST_SUBJECT]
        label_path = self.labels[TEST_SUBJECT]

        segmentation_map = img_loader.load_medical_image(label_path,
                                                         viz3d=True)
        img_t1_tensor = img_loader.load_medical_image(path_T1,
                                                      type="T1",
                                                      viz3d=True)
        img_t1ce_tensor = img_loader.load_medical_image(path_T1ce,
                                                        type="T1ce",
                                                        viz3d=True)
        img_t2_tensor = img_loader.load_medical_image(path_T2,
                                                      type="T2",
                                                      viz3d=True)
        img_flair_tensor = img_loader.load_medical_image(path_flair,
                                                         type="FLAIR",
                                                         viz3d=True)

        ### TO DO SAVE FULL VOLUME AS numpy
        if self.save:
            self.full_volume = []

            segmentation_map = segmentation_map
            img_t1_tensor = self.find_reshaped_vol(img_t1_tensor)
            img_t1ce_tensor = self.find_reshaped_vol(img_t1ce_tensor)
            img_t2_tensor = self.find_reshaped_vol(img_t2_tensor)
            img_flair_tensor = self.find_reshaped_vol(img_flair_tensor)

            self.sub_vol_path = self.root + '/MICCAI_BraTS_2018_Data_Training/generated/visualize/'
            utils.make_dirs(self.sub_vol_path)

            for i in range(len(img_t1_tensor)):
                filename = self.sub_vol_path + 'id_' + str(
                    TEST_SUBJECT) + '_VIZ_' + str(i) + '_'
                f_t1 = filename + 'T1.npy'
                f_t1ce = filename + 'T1CE.npy'
                f_t2 = filename + 'T2.npy'
                f_flair = filename + 'FLAIR.npy'
                f_seg = filename + 'seg.npy'

                np.save(f_t1, img_t1_tensor[i])
                np.save(f_t1ce, img_t1ce_tensor[i])
                np.save(f_t2, img_t2_tensor[i])
                np.save(f_flair, img_flair_tensor[i])
                np.save(f_seg, segmentation_map[i])

                self.full_volume.append(tuple((f_t1, f_t2, f_seg)))
            print("Full validation volume has been generated")
        else:
            self.full_volume = tuple(
                (img_t1_tensor, img_t2_tensor, segmentation_map))
def main():
    args = get_arguments()
    os.environ["CUDA_VISIBLE_DEVICES"] = "0"
    ## FOR REPRODUCIBILITY OF RESULTS
    seed = 1777777
    utils.reproducibility(args, seed)

    utils.make_dirs(args.save)
    utils.save_arguments(args, args.save)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args, path='.././datasets')
    model, optimizer = medzoo.create_model(args)
    criterion = create_loss('CrossEntropyLoss')
    criterion = DiceLoss(classes=args.classes,
                         weight=torch.tensor([0.1, 1, 1, 1]).cuda())

    if args.cuda:
        model = model.cuda()
        print("Model transferred in GPU.....")

    trainer = Trainer(args,
                      model,
                      criterion,
                      optimizer,
                      train_data_loader=training_generator,
                      valid_data_loader=val_generator,
                      lr_scheduler=None)
    print("START TRAINING...")
    trainer.training()
def main():
    args = get_arguments()
    utils.reproducibility(args, seed)
    utils.make_dirs(args.save)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(args,
                                                                                               path='.././datasets')
示例#6
0
def main():
    args = get_arguments()
    os.environ["CUDA_VISIBLE_DEVICES"] = "1"
    ## FOR REPRODUCIBILITY OF RESULTS
    seed = 1777777
    torch.manual_seed(seed)
    if args.cuda:
        torch.cuda.manual_seed(seed)
    np.random.seed(seed)
    cudnn.deterministic = True
    # FOR FASTER GPU TRAINING WHEN INPUT SIZE DOESN'T VARY
    # cudnn.benchmark = True

    utils.make_dirs(args.save)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(args,
                                                                                               path='.././datasets')
    model, optimizer = medzoo.create_model(args)

    criterion = DiceLoss(classes=args.classes)

    if args.cuda:
        model = model.cuda()
        print("Model transferred in GPU.....")

    trainer = Trainer(args, model, criterion, optimizer, train_data_loader=training_generator,
                      valid_data_loader=val_generator, lr_scheduler=None)
    print("START TRAINING...")
    trainer.training()
示例#7
0
    def __init__(self,
                 mode,
                 sub_task='lung',
                 split=0.2,
                 fold=0,
                 n_classes=2,
                 samples=10,
                 dataset_path='../datasets',
                 crop_dim=(32, 32, 32)):
        print("MANDIBLE SEGMENTATION DATASET")
        self.CLASSES = n_classes
        self.fold = int(fold)
        self.crop_size = crop_dim
        self.full_vol_dim = (256, 256, 192)  # width, height,slice
        self.mode = mode
        self.full_volume = None
        self.affine = None
        self.list = []
        self.samples = samples
        subvol = '_vol_' + str(crop_dim[0]) + 'x' + str(
            crop_dim[1]) + 'x' + str(crop_dim[2])

        self.sub_vol_path = dataset_path + '/MRBrainS18/subvol_generated/' + mode + subvol + '/'
        utils.make_dirs(self.sub_vol_path)

        self.train_images, self.train_labels, self.val_labels, self.val_images = [], [], [], []
        list_images = sorted(
            glob.glob(os.path.join(dataset_path, 'MRBrainS18/images/*')))

        list_labels = sorted(
            glob.glob(os.path.join(dataset_path, 'MRBrainS18/labels/*')))
        len_of_data = len(list_images)

        for i in range(len_of_data):
            if i >= (self.fold * int(split * len_of_data)) and i < (
                (self.fold * int(split * len_of_data)) +
                    int(split * len_of_data)):
                self.train_images.append(list_images[i])
                self.train_labels.append(list_labels[i])
            else:
                self.val_images.append(list_images[i])
                self.val_labels.append(list_labels[i])

        if (mode == 'train'):
            self.list_IDs = self.train_images
            self.list_labels = self.train_labels

        elif (mode == 'val'):
            self.list_IDs = self.val_images
            self.list_labels = self.val_labels

        self.list = create_sub_volumes(self.list_IDs,
                                       self.list_labels,
                                       dataset_name='covid19seg',
                                       mode=mode,
                                       samples=samples,
                                       full_vol_dim=self.full_vol_dim,
                                       crop_size=self.crop_size,
                                       sub_vol_path=self.sub_vol_path)
        print("{} SAMPLES =  {}".format(mode, len(self.list)))
示例#8
0
def main():
    args = get_arguments()

    utils.reproducibility(args, seed)
    utils.make_dirs(args.save)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args, path='.././datasets')
    model, optimizer = medzoo.create_model(args)
    criterion = DiceLoss(classes=args.classes)

    if args.cuda:
        model = model.cuda()
        print("Model transferred in GPU.....")

    trainer = train.Trainer(args,
                            model,
                            criterion,
                            optimizer,
                            train_data_loader=training_generator,
                            valid_data_loader=val_generator,
                            lr_scheduler=None)
    print("START TRAINING...")
    trainer.training()

    visualize_3D_no_overlap_new(args, full_volume, affine, model, 10, args.dim)
def main():
    args = get_arguments()

    seed = 1777777
    torch.manual_seed(seed)
    if args.cuda:
        torch.cuda.manual_seed(seed)
    np.random.seed(seed)
    cudnn.deterministic = True
    cudnn.benchmark = True

    utils.make_dirs(args.save)
    name_model = args.model + "_" + args.dataset_name + "_" + utils.datestr()

    # TODO visual3D_temp.Basewriter package
    writer = SummaryWriter(log_dir='../runs/' + name_model, comment=name_model)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args, path='.././datasets')
    model, optimizer = medzoo.create_model(args)

    if args.cuda:

        model = model.cuda()
        print("Model transferred in GPU.....")

    print("START TRAINING...")
    for epoch in range(1, args.nEpochs + 1):

        train(args, model, training_generator, optimizer, epoch, writer)
        val_metrics, confusion_matrix = validation(args, model, val_generator,
                                                   epoch, writer)
示例#10
0
def main():
    args = get_arguments()

    os.environ["CUDA_VISIBLE_DEVICES"] = "0,2"
    ## FOR REPRODUCIBILITY OF RESULTS
    seed = 1777777
    utils.reproducibility(args, seed)
    utils.make_dirs(args.save)
    name_model = args.model + "_" + args.dataset_name + "_" + utils.datestr()

    # TODO visual3D_temp.Basewriter package
    writer = SummaryWriter(log_dir='../runs/' + name_model, comment=name_model)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args, path='.././datasets')
    model, optimizer = medzoo.create_model(args)

    if args.cuda:
        model = model.cuda()
        print("Model transferred in GPU.....")

    print("START TRAINING...")
    for epoch in range(1, args.nEpochs + 1):
        train(args, model, training_generator, optimizer, epoch, writer)
        val_metrics, confusion_matrix = validation(args, model, val_generator,
                                                   epoch, writer)
示例#11
0
    def __init__(self, dataset_path='./data', voxels_space=(2, 2, 2), modalities=2, to_canonical=False, save=True):
        """
        :param dataset_path: the extracted path that contains the desired images
        :param voxels_space: for reshampling the voxel space
        :param modalities: 1 for T1 only, 2 for T1 and T2
        :param to_canonical: If you want to convert the coordinates to RAS
        for more info on this advice here https://www.slicer.org/wiki/Coordinate_systems
        :param save: to save the generated data offline for faster reading
        and not load RAM
        """
        self.root = str(dataset_path)
        self.modalities = modalities
        self.pathT1 = self.root + '/ixi/T1/'
        self.pathT2 = self.root + '/ixi/T2/'
        self.save = save
        self.CLASSES = 4
        self.full_vol_dim = (150, 256, 256)  # slice, width, height
        self.voxels_space = voxels_space
        self.modalities = str(modalities)
        self.list = []
        self.full_volume = None
        self.to_canonical = to_canonical
        self.affine = None

        subvol = '_vol_' + str(self.voxels_space[0]) + 'x' + str(self.voxels_space[1]) + 'x' + str(
            self.voxels_space[2])

        if self.save:
            self.sub_vol_path = self.root + '/ixi/generated/' + subvol + '/'
            utils.make_dirs(self.sub_vol_path)
        print(self.pathT1)
        self.list_IDsT1 = sorted(glob.glob(os.path.join(self.pathT1, '*T1.nii.gz')))
        self.list_IDsT2 = sorted(glob.glob(os.path.join(self.pathT2, '*T2.nii.gz')))
        self.affine = img_loader.load_affine_matrix(self.list_IDsT1[0])
        self.create_input_data()
示例#12
0
    def __init__(self, args, mode, dataset_path='../datasets', classes=4, dim=(32, 32, 32), split_id=0, samples=1000,
                 load=False):
        self.mode = mode
        self.root = dataset_path
        self.classes = classes
        dataset_name = "mrbrains" + str(classes)
        self.training_path = self.root + '/mrbrains_2018/training'
        self.dirs = os.listdir(self.training_path)
        self.samples = samples
        self.list = []
        self.full_vol_size = (240, 240, 48)
        self.threshold = 0.1
        self.crop_dim = dim
        self.list_flair = []
        self.list_ir = []
        self.list_reg_ir = []
        self.list_reg_t1 = []
        self.labels = []
        self.full_volume = None
        self.save_name = self.root + '/mrbrains_2018/training/mrbrains_2018-classes-' + str(
            classes) + '-list-' + mode + '-samples-' + str(
            samples) + '.txt'

        if load:
            ## load pre-generated data
            self.list = utils.load_list(self.save_name)
            return

        subvol = '_vol_' + str(dim[0]) + 'x' + str(dim[1]) + 'x' + str(dim[2])
        self.sub_vol_path = self.root + '/mrbrains_2018/generated/' + mode + subvol + '/'
        utils.make_dirs(self.sub_vol_path)

        list_reg_t1 = sorted(glob.glob(os.path.join(self.training_path, '*/pr*/*g_T1.nii.gz')))
        list_reg_ir = sorted(glob.glob(os.path.join(self.training_path, '*/pr*/*g_IR.nii.gz')))
        list_flair = sorted(glob.glob(os.path.join(self.training_path, '*/pr*/*AIR.nii.gz')))
        labels = sorted(glob.glob(os.path.join(self.training_path, '*/*egm.nii.gz')))
        self.affine = img_loader.load_affine_matrix(list_reg_t1[0])

        split_id = int(split_id)
        if mode == 'val':
            labels = [labels[split_id]]
            list_reg_t1 = [list_reg_t1[split_id]]
            list_reg_ir = [list_reg_ir[split_id]]
            list_flair = [list_flair[split_id]]
            self.full_volume = get_viz_set(list_reg_t1, list_reg_ir, list_flair, labels, dataset_name=dataset_name)
        else:
            labels.pop(split_id)
            list_reg_t1.pop(split_id)
            list_reg_ir.pop(split_id)
            list_flair.pop(split_id)

        self.list = create_sub_volumes(list_reg_t1, list_reg_ir, list_flair, labels,
                                       dataset_name=dataset_name, mode=mode,
                                       samples=samples, full_vol_dim=self.full_vol_size,
                                       crop_size=self.crop_dim, sub_vol_path=self.sub_vol_path,
                                       th_percent=self.threshold)

        utils.save_list(self.save_name, self.list)
    def __init__(self,
                 mode,
                 dataset_path='.././datasets',
                 split_idx=150,
                 crop_dim=(512, 512),
                 samples=100,
                 classes=7,
                 save=True):
        """
        :param mode: 'train','val'
        :param image_paths: image dataset paths
        :param label_paths: label dataset paths
        :param crop_dim: 2 element tuple to decide crop values
        :param samples: number of sub-grids to create(patches of the input img)
        """
        image_paths = sorted(
            glob.glob(
                dataset_path +
                "/MICCAI_2019_pathology_challenge/Train Imgs/Train Imgs/*.jpg")
        )
        label_paths = sorted(
            glob.glob(dataset_path +
                      "/MICCAI_2019_pathology_challenge/Labels/*.png"))

        # TODO problem with random shuffle in val and train
        # TODo cope with 3d affine and full volume for better generalization
        image_paths, label_paths = utils.shuffle_lists(image_paths,
                                                       label_paths)
        self.full_volume = None
        self.affine = None

        self.slices = 244  # dataset instances
        self.mode = mode
        self.crop_dim = crop_dim
        self.sample_list = []
        self.samples = samples
        self.save = save
        self.root = dataset_path
        self.per_image_sample = int(self.samples / self.slices)
        if self.per_image_sample < 1:
            self.per_image_sample = 1

        print("per image sampleeeeee", self.per_image_sample)

        sub_grid = '_2dgrid_' + str(crop_dim[0]) + 'x' + str(crop_dim[1])

        if self.save:
            self.sub_vol_path = self.root + '/MICCAI_2019_pathology_challenge/generated/' + mode + sub_grid + '/'
            utils.make_dirs(self.sub_vol_path)

        if self.mode == 'train':
            self.list_imgs = image_paths[0:split_idx]
            self.list_labels = label_paths[0:split_idx]
        elif self.mode == 'val':
            self.list_imgs = image_paths[split_idx:]
            self.list_labels = label_paths[split_idx:]

        self.generate_samples()
示例#14
0
    def __init__(self,
                 mode,
                 dataset_path='../datasets',
                 classes=4,
                 dim=(32, 32, 32),
                 fold_id=0,
                 samples=1000,
                 save=True):
        self.mode = mode
        self.root = dataset_path
        self.classes = classes
        self.training_path = self.root + '/mrbrains_2018/training'
        self.dirs = os.listdir(self.training_path)
        self.samples = samples
        self.save = save
        self.list = []
        self.full_vol_size = (240, 240, 48)
        self.crop_dim = dim
        self.fold = str(fold_id)
        self.list_flair = []
        self.list_ir = []
        self.list_reg_ir = []
        self.list_reg_t1 = []
        self.labels = []
        self.full_volume = None

        if self.save:
            subvol = '_vol_' + str(dim[0]) + 'x' + str(dim[1]) + 'x' + str(
                dim[2])
            self.sub_vol_path = self.root + '/mrbrains_2018/generated/' + mode + subvol + '/'
            utils.make_dirs(self.sub_vol_path)

        self.list_reg_t1 = sorted(
            glob.glob(os.path.join(self.training_path, '*/pr*/*g_T1.nii.gz')))
        self.list_reg_ir = sorted(
            glob.glob(os.path.join(self.training_path, '*/pr*/*g_IR.nii.gz')))
        self.list_flair = sorted(
            glob.glob(os.path.join(self.training_path, '*/pr*/*AIR.nii.gz')))
        self.labels = sorted(
            glob.glob(os.path.join(self.training_path, '*/*egm.nii.gz')))
        self.affine = img_loader.load_affine_matrix(self.list_reg_t1[0])

        fold_id = int(fold_id)
        if mode == 'val':
            self.labels = [self.labels[fold_id]]
            self.list_reg_t1 = [self.list_reg_t1[fold_id]]
            self.list_reg_ir = [self.list_reg_ir[fold_id]]
            self.list_flair = [self.list_flair[fold_id]]
            self.get_viz_set()
        else:
            self.labels.pop(fold_id)
            self.list_reg_t1.pop(fold_id)
            self.list_reg_ir.pop(fold_id)
            self.list_flair.pop(fold_id)
        self.get_samples()
示例#15
0
    def get_viz_set(self, test_subject=0):
        """
        Returns total 3d input volumes (t1 and t2 or more) and segmentation maps
        3d total vol shape : torch.Size([1, 144, 192, 256])
        """
        TEST_SUBJECT = test_subject
        path_T1 = self.list_IDsT1[TEST_SUBJECT]
        path_T2 = self.list_IDsT2[TEST_SUBJECT]
        label_path = self.labels[TEST_SUBJECT]

        segmentation_map = img_loader.load_medical_image(label_path,
                                                         viz3d=True)

        img_t1_tensor = img_loader.load_medical_image(path_T1,
                                                      type="T1",
                                                      viz3d=True)
        img_t2_tensor = img_loader.load_medical_image(path_T2,
                                                      type="T2",
                                                      viz3d=True)
        segmentation_map = self.fix_seg_map(segmentation_map)

        ### TO DO SAVE FULL VOLUME AS numpy
        if self.save:
            self.full_volume = []

            segmentation_map = segmentation_map.reshape(
                -1, self.crop_size[0], self.crop_size[1], self.crop_size[2])
            img_t1_tensor = img_t1_tensor.reshape(-1, self.crop_size[0],
                                                  self.crop_size[1],
                                                  self.crop_size[2])
            img_t2_tensor = img_t1_tensor.reshape(-1, self.crop_size[0],
                                                  self.crop_size[1],
                                                  self.crop_size[2])
            self.sub_vol_path = self.root + '/iseg_2017/generated/visualize/'
            utils.make_dirs(self.sub_vol_path)

            for i in range(len(img_t1_tensor)):
                filename = self.sub_vol_path + 'id_' + str(
                    TEST_SUBJECT) + '_VIZ_' + str(i) + '_'
                f_t1 = filename + 'T1.npy'
                f_t2 = filename + 'T2.npy'
                f_seg = filename + 'seg.npy'

                np.save(f_t1, img_t1_tensor[i])
                np.save(f_t2, img_t2_tensor[i])

                np.save(f_seg, segmentation_map[i])
                self.full_volume.append(tuple((f_t1, f_t2, f_seg)))
            print("Full validation volume has been generated")
        else:
            self.full_volume = tuple(
                (img_t1_tensor, img_t2_tensor, segmentation_map))
示例#16
0
    def __init__(self, args):

        name_model = args.log_dir + args.model + "_" + args.dataset_name + "_" + utils.datestr(
        )
        self.writer = SummaryWriter(log_dir=args.log_dir + name_model,
                                    comment=name_model)

        utils.make_dirs(args.save)
        self.csv_train, self.csv_val = self.create_stats_files(args.save)
        self.dataset_name = args.dataset_name
        self.classes = args.classes
        self.label_names = dict_class_names[args.dataset_name]

        self.data = self.create_data_structure()
def main():
    args = get_arguments()
    utils.reproducibility(args, seed)
    utils.make_dirs(args.save)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(args,
                                                                                               path='.././datasets')
    model, optimizer = medzoo.create_model(args)
    criterion = DiceLoss(classes=args.classes)

    if args.cuda:
        model = model.cuda()

    trainer = train.Trainer(args, model, criterion, optimizer, train_data_loader=training_generator,
                            valid_data_loader=val_generator)
    trainer.training()
def main():
    args = get_arguments()
    utils.reproducibility(args, seed)
    utils.make_dirs(args.save)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(args,
                                                                                               path='.././datasets')
    model, optimizer = medzoo.create_model(args)
    criterion = DiceLoss(classes=args.classes)  # ,skip_index_after=2,weight=torch.tensor([0.00001,1,1,1]).cuda())

    if args.cuda:
        model = model.cuda()
        print("Model transferred in GPU.....")

    trainer = train.Trainer(args, model, criterion, optimizer, train_data_loader=training_generator,
                            valid_data_loader=val_generator)
    print("START TRAINING...")
    trainer.training()
示例#19
0
def main():
    args = get_arguments()
    utils.reproducibility(args, seed)
    utils.make_dirs(args.save)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(args,
                                                                                               path='./datasets')
    model, optimizer = medzoo.create_model(args)
    criterion = DiceLoss(classes=args.classes)
    # print("training_generator shape:", training_generator.dim())
    # print("val_generator shape:", val_generator.dim())

    if args.cuda:
        model = model.cuda()
    print("start training...")
    # torch.save(training_generator, "training_generator.tch")
    # torch.save(val_generator, "val_generator.tch")
    trainer = train.Trainer(args, model, criterion, optimizer, train_data_loader=training_generator,
                            valid_data_loader=val_generator)
    trainer.training()
def main():
    args = get_arguments()
    utils.make_dirs(args.save)
    train_f, val_f = utils.create_stats_files(args.save)
    name_model = args.model + "_" + args.dataset_name + "_" + utils.datestr()
    writer = SummaryWriter(log_dir='../runs/' + name_model, comment=name_model)
    best_prec1 = 100.

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args, path='.././datasets')
    model, optimizer = medzoo.create_model(args)

    criterion = DiceLoss(classes=args.classes)

    if args.cuda:
        torch.cuda.manual_seed(seed)
        model = model.cuda()
        print("Model transferred in GPU.....")

    print("START TRAINING...")
    for epoch in range(1, args.nEpochs + 1):
        train_stats = train.train_dice(args, epoch, model, training_generator,
                                       optimizer, criterion, train_f, writer)

        val_stats = train.test_dice(args, epoch, model, val_generator,
                                    criterion, val_f, writer)

        utils.write_train_val_score(writer, epoch, train_stats, val_stats)

        model.save_checkpoint(args.save,
                              epoch,
                              val_stats[0],
                              optimizer=optimizer)

        # if epoch % 5 == 0:
        # utils.visualize_no_overlap(args, full_volume, affine, model, epoch, DIM, writer)

        #utils.save_model(model, args, val_stats[0], epoch, best_prec1)

    train_f.close()
    val_f.close()
def main():
    args = get_arguments()
    utils.make_dirs(args.save)
    train_f, val_f = utils.create_stats_files(args.save)

    name_model = args.model + "_" + args.dataset_name + "_" + utils.datestr()
    writer = SummaryWriter(log_dir='../runs/' + name_model, comment=name_model)

    best_pred = 1.01
    samples_train = 200
    samples_val = 200
    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args,
        path='.././datasets',
        samples_train=samples_train,
        samples_val=samples_val)

    model, optimizer = medzoo.create_model(args)
    criterion = medzoo.DiceLoss2D(args.classes)

    if args.cuda:
        torch.cuda.manual_seed(seed)
        model = model.cuda()

    for epoch in range(1, args.nEpochs + 1):
        train_stats = train.train_dice(args, epoch, model, training_generator,
                                       optimizer, criterion, train_f, writer)
        val_stats = train.test_dice(args, epoch, model, val_generator,
                                    criterion, val_f, writer)

        utils.write_train_val_score(writer, epoch, train_stats, val_stats)
        best_pred = utils.save_model(model=model,
                                     args=args,
                                     dice_loss=val_stats[0],
                                     epoch=epoch,
                                     best_pred_loss=best_pred)

    train_f.close()
    val_f.close()
示例#22
0
def main():
    args = get_arguments()

    if args.distributed:
        torch.distributed.init_process_group(backend='nccl',
                                             init_method='env://')
        args.world_size = torch.distributed.get_world_size()
    assert torch.backends.cudnn.enabled, "Amp requires cudnn backend to be enabled."  #1

    torch.backends.cudnn.benchmark = True

    utils.reproducibility(args, seed)
    utils.make_dirs(args.save)

    training_generator, val_generator, full_volume, affine = medical_loaders.generate_datasets(
        args, path='.././datasets')
    model, optimizer = medzoo.create_model(args)
    criterion = DiceLoss(classes=11, skip_index_after=args.classes)
    if args.sync_bn:
        model = apex.parallel.convert_syncbn_model(model)

    if args.cuda:
        model = model.cuda()
        print("Model transferred in GPU.....")

    if args.distributed:
        model = DDP(model, delay_allreduce=True)

    trainer = train.Trainer(args,
                            model,
                            criterion,
                            optimizer,
                            train_data_loader=training_generator,
                            valid_data_loader=val_generator,
                            lr_scheduler=None)
    print("START TRAINING...")
    trainer.training()
示例#23
0
文件: train.py 项目: somaminami/DCL
                  train_loader,
                  test_loader,
                  logs,
                  trial=trial,
                  **kwargs)

    acc = 100 - logs[0]["epoch_log"][config.trainer.epochs]["test_accuracy"]

    return acc


# ## Cteate study object

# In[ ]:

utils.make_dirs(args.optuna_dir)

sampler = optuna.samplers.RandomSampler()
pruner = optuna.pruners.SuccessiveHalvingPruner(min_resource=1,
                                                reduction_factor=2,
                                                min_early_stopping_rate=0)

db_path = os.path.join(args.optuna_dir, "optuna.db")
study = optuna.create_study(storage=f"sqlite:///{db_path}",
                            study_name='experiment01',
                            sampler=sampler,
                            pruner=pruner,
                            direction="minimize",
                            load_if_exists=True)

# ## Start optimization
示例#24
0
    def __init__(self,
                 mode,
                 dataset_path='./datasets',
                 crop_dim=(32, 32, 32),
                 split_id=1,
                 samples=1000,
                 load=False):
        """
        :param mode: 'train','val','test'
        :param dataset_path: root dataset folder
        :param crop_dim: subvolume tuple
        :param fold_id: 1 to 10 values
        :param samples: number of sub-volumes that you want to create
        """
        self.mode = mode
        self.root = str(dataset_path)
        self.training_path = self.root + '/iseg_2017/iSeg-2017-Training/'
        self.testing_path = self.root + '/iseg_2017/iSeg-2017-Testing/'
        self.CLASSES = 4
        self.full_vol_dim = (144, 192, 256)  # slice, width, height
        self.crop_size = crop_dim
        self.list = []
        self.samples = samples
        self.full_volume = None
        self.save_name = self.root + '/iseg_2017/iSeg-2017-Training/iseg2017-list-' + mode + '-samples-' + str(
            samples) + '.txt'

        if load:
            self.list = utils.load_list(self.save_name)
            list_IDsT1 = sorted(
                glob.glob(os.path.join(self.training_path, '*T1.img')))
            self.affine = img_loader.load_affine_matrix(list_IDsT1[0])
            return

        subvol = '_vol_' + str(crop_dim[0]) + 'x' + str(
            crop_dim[1]) + 'x' + str(crop_dim[2])
        self.sub_vol_path = self.root + '/iseg_2017/generated/' + mode + subvol + '/'
        utils.make_dirs(self.sub_vol_path)

        list_IDsT1 = sorted(
            glob.glob(os.path.join(self.training_path, '*T1.img')))
        list_IDsT2 = sorted(
            glob.glob(os.path.join(self.training_path, '*T2.img')))
        labels = sorted(
            glob.glob(os.path.join(self.training_path, '*label.img')))
        self.affine = img_loader.load_affine_matrix(list_IDsT1[0])

        if self.mode == 'train':
            list_IDsT1 = list_IDsT1[:split_id]
            list_IDsT2 = list_IDsT2[:split_id]
            labels = labels[:split_id]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT2,
                                           labels,
                                           dataset_name="iseg2017",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           threshold=10)

        elif self.mode == 'val':
            list_IDsT1 = list_IDsT1[split_id:]
            list_IDsT2 = list_IDsT2[:split_id:]
            labels = labels[split_id:]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT2,
                                           labels,
                                           dataset_name="iseg2017",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           threshold=10)

            self.full_volume = get_viz_set(list_IDsT1, list_IDsT2, labels)

        elif self.mode == 'test':
            self.list_IDsT1 = sorted(
                glob.glob(os.path.join(self.testing_path, '*T1.img')))
            self.list_IDsT2 = sorted(
                glob.glob(os.path.join(self.testing_path, '*T2.img')))
            self.labels = None

        utils.save_list(self.save_name, self.list)
示例#25
0
    def __init__(self,
                 args,
                 mode,
                 dataset_path='./datasets',
                 classes=5,
                 crop_dim=(32, 32, 32),
                 split_idx=10,
                 samples=10,
                 load=False):
        """
        :param mode: 'train','val','test'
        :param dataset_path: root dataset folder
        :param crop_dim: subvolume tuple
        :param split_idx: 1 to 10 values
        :param samples: number of sub-volumes that you want to create
        """
        self.mode = mode
        self.root = str(dataset_path)
        self.training_path = self.root + '/MICCAI_BraTS_2018_Data_Training/'
        self.testing_path = self.root + ' '
        self.CLASSES = 4
        self.full_vol_dim = (240, 240, 155)  # slice, width, height
        self.crop_size = crop_dim
        self.threshold = args.threshold
        self.normalization = args.normalization
        self.augmentation = args.augmentation
        self.list = []
        self.samples = samples
        self.full_volume = None
        self.classes = classes
        self.save_name = self.root + '/MICCAI_BraTS_2018_Data_Training/brats2018-list-' + mode + '-samples-' + str(
            samples) + '.txt'
        if self.augmentation:
            self.transform = augment3D.RandomChoice(transforms=[
                augment3D.GaussianNoise(mean=0, std=0.01),
                augment3D.RandomFlip(),
                augment3D.ElasticTransform()
            ],
                                                    p=0.5)
        if load:
            ## load pre-generated data
            list_IDsT1 = sorted(
                glob.glob(os.path.join(self.training_path,
                                       '*GG/*/*t1.nii.gz')))
            self.affine = img_loader.load_affine_matrix(list_IDsT1[0])
            self.list = utils.load_list(self.save_name)
            return

        subvol = '_vol_' + str(crop_dim[0]) + 'x' + str(
            crop_dim[1]) + 'x' + str(crop_dim[2])
        self.sub_vol_path = self.root + '/MICCAI_BraTS_2018_Data_Training/generated/' + mode + subvol + '/'
        utils.make_dirs(self.sub_vol_path)

        list_IDsT1 = sorted(
            glob.glob(os.path.join(self.training_path, '*GG/*/*t1.nii.gz')))
        list_IDsT1ce = sorted(
            glob.glob(os.path.join(self.training_path, '*GG/*/*t1ce.nii.gz')))
        list_IDsT2 = sorted(
            glob.glob(os.path.join(self.training_path, '*GG/*/*t2.nii.gz')))
        list_IDsFlair = sorted(
            glob.glob(os.path.join(self.training_path,
                                   '*GG/*/*_flair.nii.gz')))
        labels = sorted(
            glob.glob(os.path.join(self.training_path, '*GG/*/*_seg.nii.gz')))
        # print(len(list_IDsT1),len(list_IDsT2),len(list_IDsFlair),len(labels))

        self.affine = img_loader.load_affine_matrix(list_IDsT1[0])

        if self.mode == 'train':
            list_IDsT1 = list_IDsT1[:split_idx]
            list_IDsT1ce = list_IDsT1ce[:split_idx]
            list_IDsT2 = list_IDsT2[:split_idx]
            list_IDsFlair = list_IDsFlair[:split_idx]
            labels = labels[:split_idx]

            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT1ce,
                                           list_IDsT2,
                                           list_IDsFlair,
                                           labels,
                                           dataset_name="brats2018",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           normalization=self.normalization,
                                           th_percent=self.threshold)
        elif self.mode == 'val':
            list_IDsT1 = list_IDsT1[split_idx:]
            list_IDsT1ce = list_IDsT1ce[split_idx:]
            list_IDsT2 = list_IDsT2[split_idx:]
            list_IDsFlair = list_IDsFlair[split_idx:]
            labels = labels[split_idx:]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT1ce,
                                           list_IDsT2,
                                           list_IDsFlair,
                                           labels,
                                           dataset_name="brats2018",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           normalization=self.normalization,
                                           th_percent=self.threshold)

        elif self.mode == 'test':
            self.list_IDsT1 = sorted(
                glob.glob(os.path.join(self.testing_path, '*GG/*/*t1.nii.gz')))
            self.list_IDsT1ce = sorted(
                glob.glob(os.path.join(self.testing_path,
                                       '*GG/*/*t1ce.nii.gz')))
            self.list_IDsT2 = sorted(
                glob.glob(os.path.join(self.testing_path, '*GG/*/*t2.nii.gz')))
            self.list_IDsFlair = sorted(
                glob.glob(
                    os.path.join(self.testing_path, '*GG/*/*_flair.nii.gz')))
            self.labels = None

        utils.save_list(self.save_name, self.list)
def test_net(args, dataset, model, kernel_dim=(32, 32, 32)):
    # import ipdb;ipdb.set_trace()
    num_imgs = len(dataset)   
    
    public_id_list_all = []
    label_id_list_all = []
    confidence_list_all = []
    label_code_list_all = []
    utils.make_dirs(args.nii_save_path)
    for i in range(num_imgs):    
        print('%d/%d is tested'%(i,num_imgs))
        x, target, img_path, img_affine, img_hdr = dataset.__getitem__(i)
        if args.cuda:
            x = x.unsqueeze(0).cuda()
            # target = target.cuda()
        # import ipdb;ipdb.set_trace()
        # x = full_volume[:-1,...].detach()
        # # target = full_volume[-1,...].unsqueeze(0).detach()
        # target = full_volume[-1,...].detach()
        # # import ipdb;ipdb.set_trace()
        h,w,d = target.shape
        # target_new = torch.zeros(6,h,w,d)
        # target_new[0][target==0] = 1
        # target_new[1][target==1] = 1
        # target_new[2][target==2] = 1
        # target_new[3][target==3] = 1
        # target_new[4][target==4] = 1
        # target_new[5][target==5] = 1
        # target = target_new
       
        modalities, D, H, W = x.shape
        kernel_dim=(512,512,48)
        kc, kh, kw = kernel_dim
        dc, dh, dw = kernel_dim  # stride
        # Pad to multiples of kernel_dim
        a = ((roundup(W, kw) - W) // 2 + W % 2, (roundup(W, kw) - W) // 2,
             (roundup(H, kh) - H) // 2 + H % 2, (roundup(H, kh) - H) // 2,
             (roundup(D, kc) - D) // 2 + D % 2, (roundup(D, kc) - D) // 2)
        x = F.pad(x, a)
        assert x.size(3) % kw == 0
        assert x.size(2) % kh == 0
        assert x.size(1) % kc == 0
        patches = x.unfold(1, kc, dc).unfold(2, kh, dh).unfold(3, kw, dw)
        unfold_shape = list(patches.size())
        patches = patches.contiguous().view(-1, modalities, kc, kh, kw)
    
        ## TODO torch stack
        # with torch.no_grad():
        #     output = model.inference(patches)
        number_of_volumes = patches.shape[0]
        predictions = []
    
        for i in range(number_of_volumes):
            input_tensor = patches[i, ...].unsqueeze(0)
            predictions.append(model.inference(input_tensor))
        output = torch.stack(predictions, dim=0).squeeze(1).detach()
        N, Classes, _, _, _ = output.shape
        output_unfold_shape = unfold_shape[1:]
        output_unfold_shape.insert(0, Classes)
        output = output.view(output_unfold_shape)
        output_c = output_unfold_shape[1] * output_unfold_shape[4]
        output_h = output_unfold_shape[2] * output_unfold_shape[5]
        output_w = output_unfold_shape[3] * output_unfold_shape[6]
        output = output.permute(0, 1, 4, 2, 5, 3, 6).contiguous()
        output = output.view(-1, output_c, output_h, output_w)
    
        y = output[:, a[4]:output_c - a[5], a[2]:output_h - a[3], a[0]:output_w - a[1]]
        
        # x = x.unsqueeze(0)
        # y = model(x).squeeze(0).cpu().detach()
        # _, h,w,d = y.shape

        
        y = torch.nn.Softmax(dim=0)(y)
        y[y<0.5] = 0
        # y = torch.nn.Sigmoid()(y)
       
        index_ = np.where(y!=0)
        # import ipdb;ipdb.set_trace()
        # confidence_list = y[index_]
        # y_new = torch.zeros(h,w,d)
        # y[index_] = torch.from_numpy(index_[0]).float()
        pred = torch.zeros(h,w,d)
        pred_out = torch.zeros(h,w,d)
        # import ipdb;ipdb.set_trace()
        # pred_out = morphology.erosion(pred_out)
        
        conf = torch.zeros(h,w,d)
        # import ipdb;ipdb.set_trace()
        pred[(index_[1], index_[2], index_[3])] = torch.from_numpy(index_[0]).float()
        conf[(index_[1], index_[2], index_[3])] = y[index_]
        # pred= segmentation.clear_border(pred)
        # import ipdb;ipdb.set_trace()
        # pred = morphology.erosion(pred)
        # for i in range(1, 6):
        #     index_i= np.where(pred==i)
        #     if index_i[0].size == 0:
        #         continue
        #     fea_1 = np.vstack((index_i[0], index_i[1], index_i[2])).T
        #     label_pred = DBSCAN(eps=5).fit_predict(fea_1)
        #     label_counter = Counter(label_pred)
        #     labelId_toRm = []
        #     # labelId_left = []
        #     num_thresh = 10
        #     for label_id, num in label_counter.items():
        #         if num < num_thresh:
        #             labelId_toRm.append(label_id)
        #         # else:
        #             # labelId_left.append(label_id)
        #     if -1 not in labelId_toRm:
        #         labelId_toRm.append(-1) 
        #     index_toRm_list = []
        #     for label_id in labelId_toRm:
        #         index_toRm_list.extend(np.where(label_pred == label_id)[0].tolist())
        #     try:
        #         xyz_toRm =  fea_1[np.array(index_toRm_list)].T
        #     except:
        #         import ipdb;ipdb.set_trace()
        #     xyz_toRm_org = (xyz_toRm[0], xyz_toRm[1], xyz_toRm[2])
        #     pred[xyz_toRm_org] = 0.
        # pred = morphology.dilation(morphology.erosion(pred))
        # fig = plt.figure()
        # ax = fig.gca(projection='3d')
        
        label_id_cnt = 0
        label_code_list = []
        confidence_list = []
        public_id_list = []
        label_id_list = []
        for i in range(1, 6):
            pred_i = torch.zeros(h,w,d)
            # index_i = np.where(pred == i)
            pred_i[np.where(pred == i)] = 1
            pred_i = morphology.erosion(pred_i)
            pred_i = morphology.erosion(pred_i)
            # pred_i = morphology.dilation(morphology.erosion(pred_i))
            labels = measure.label(pred_i, connectivity=3)
            
            # import ipdb;ipdb.set_trace()
            areas = [_.area for _ in measure.regionprops(labels)]
            areas.sort()
            if len(areas) > 2:
                for region in measure.regionprops(labels):
                    if region.area < areas[-2]:
                    # if region.area > areas[0]:
                        coords_ = region.coords.T
                        coords_org = (coords_[0], coords_[1], coords_[2])
                        pred_i[coords_org] = 0
            labels = measure.label(pred_i, connectivity=3)
            # import ipdb;ipdb.set_trace()
            
            for i, region in enumerate(measure.regionprops(labels)):
                if len(region.coords) < 10000:
                    continue
                label_code = int(pred[tuple(region.coords[0].tolist())])
                label_code = -1 if label_code == 5 else label_code
                label_code_list.append(label_code)
                label_id_cnt += 1
                label_id_list.append(label_id_cnt)
                coords_ = region.coords.T
                # import ipdb;ipdb.set_trace()
                # ax.scatter(coords_[0], coords_[1], coords_[2], c = np.tile(np.array([label_id_cnt*10]), len(coords_[2])))
                # plt.savefig('scatter.png')
                # import ipdb;ipdb.set_trace()
                coords_org = (coords_[0], coords_[1], coords_[2])
                confidence = float(torch.sum(conf[coords_org]) / len(coords_org[0]))
                pred_out[coords_org] = label_id_cnt #float(label_id_cnt)
                confidence_list.append(confidence)
            # import ipdb;ipdb.set_trace()
        # plt.savefig('scatter.png')
        # import ipdb;ipdb.set_trace()
        label_code_list.insert(0,0)
        label_id_list.insert(0,0)
        confidence_list.insert(0,1)
        pred_cls_num = len(label_code_list)
        public_id = os.path.basename(img_path).split('-')[0]
        public_id_list = [public_id] * pred_cls_num

        public_id_list_all.extend(public_id_list)
        label_id_list_all.extend(label_id_list)
        confidence_list_all.extend(confidence_list)
        label_code_list_all.extend(label_code_list)
        
        test_nii_save_path = os.path.join(args.nii_save_path,public_id+'.nii.gz')
        # nib.Nifti1Image(pred, img_affine).to_filename(test_nii_save_path)
        newLabelImg = nib.Nifti1Image(pred_out.numpy(), img_affine)
        newLabelImg.set_data_dtype(np.dtype(np.float32))
        dimsImgToSave = len(pred_out.shape)
        newZooms = list(img_hdr.get_zooms()[:dimsImgToSave])
        if len(newZooms) < dimsImgToSave : #Eg if original image was 3D, but I need to save a multi-channel image.
            newZooms = newZooms + [1.0]*(dimsImgToSave - len(newZooms))
        newLabelImg.header.set_zooms(newZooms)
        nib.save(newLabelImg, test_nii_save_path)
        
    dataframe = pd.DataFrame({'public_id':public_id_list_all, 'label_id':label_id_list_all,'confidence':confidence_list_all, 'label_code':label_code_list_all})
    dataframe.to_csv(args.nii_save_path+"/ribfrac-val-pred.csv",index=False,sep=',')
示例#27
0
    def __init__(self,
                 mode,
                 dataset_path='./datasets',
                 crop_dim=(32, 32, 32),
                 fold_id=1,
                 samples=1000,
                 save=True):
        """
        :param mode: 'train','val','test'
        :param dataset_path: root dataset folder
        :param crop_dim: subvolume tuple
        :param fold_id: 1 to 10 values
        :param samples: number of sub-volumes that you want to create
        """
        self.mode = mode
        self.root = str(dataset_path)
        self.training_path = self.root + '/iseg_2017/iSeg-2017-Training/'
        self.testing_path = self.root + '/iseg_2017/iSeg-2017-Testing/'
        self.save = save
        self.CLASSES = 4
        self.full_vol_dim = (144, 192, 256)  # slice, width, height
        self.crop_size = crop_dim
        self.fold = str(fold_id)
        self.list = []
        self.samples = samples
        self.full_volume = None

        subvol = '_vol_' + str(crop_dim[0]) + 'x' + str(
            crop_dim[1]) + 'x' + str(crop_dim[2])

        if self.save:
            self.sub_vol_path = self.root + '/iseg_2017/generated/' + mode + subvol + '/'
            utils.make_dirs(self.sub_vol_path)

        list_IDsT1 = sorted(
            glob.glob(os.path.join(self.training_path, '*T1.img')))
        list_IDsT2 = sorted(
            glob.glob(os.path.join(self.training_path, '*T2.img')))
        labels = sorted(
            glob.glob(os.path.join(self.training_path, '*label.img')))
        self.affine = img_loader.load_affine_matrix(list_IDsT1[0])

        training_labels, training_list_IDsT1, training_list_IDsT2, val_list_IDsT1, val_list_IDsT2, val_labels = [], [], [], [], [], []
        print("SELECT subject with ID {} for Validation".format(self.fold))

        for i in range(len(labels)):
            subject_id = (labels[i].split('/')[-1]).split('-')[1]

            if subject_id == self.fold:
                val_list_IDsT1.append(list_IDsT1[i])
                val_list_IDsT2.append(list_IDsT2[i])
                val_labels.append(labels[i])
            else:
                training_list_IDsT1.append(list_IDsT1[i])
                training_list_IDsT2.append(list_IDsT2[i])
                training_labels.append(labels[i])

        if self.mode == 'train':
            self.list_IDsT1 = training_list_IDsT1
            self.list_IDsT2 = training_list_IDsT2
            self.labels = training_labels
            # Generates datasets with non-empty sub-volumes!
            self.create_sub_volumes()

        elif self.mode == 'val':
            self.list_IDsT1 = val_list_IDsT1
            self.list_IDsT2 = val_list_IDsT2
            self.labels = val_labels
            self.create_sub_volumes()
            self.get_viz_set()

        elif self.mode == 'test':
            self.list_IDsT1 = sorted(
                glob.glob(os.path.join(self.testing_path, '*T1.img')))
            self.list_IDsT2 = sorted(
                glob.glob(os.path.join(self.testing_path, '*T2.img')))
            self.labels = None
示例#28
0
    def __init__(self,
                 mode,
                 dataset_path='./datasets',
                 classes=5,
                 crop_dim=(200, 200, 150),
                 split_idx=260,
                 samples=10,
                 load=False):
        """
        :param mode: 'train','val','test'
        :param dataset_path: root dataset folder
        :param crop_dim: subvolume tuple
        :param split_idx: 1 to 10 values
        :param samples: number of sub-volumes that you want to create
        """
        self.mode = mode
        self.root = str(dataset_path)
        self.training_path = self.root + '/brats2019/MICCAI_BraTS_2019_Data_Training/'
        self.testing_path = self.root + '/brats2019/MICCAI_BraTS_2019_Data_Validation/'
        self.full_vol_dim = (240, 240, 155)  # slice, width, height
        self.crop_size = crop_dim
        self.list = []
        self.samples = samples
        self.full_volume = None
        self.classes = classes

        self.save_name = self.root + '/brats2019/brats2019-list-' + mode + '-samples-' + str(
            samples) + '.txt'

        if load:
            self.list = utils.load_list(self.save_name)
            list_IDsT1 = sorted(
                glob.glob(os.path.join(self.training_path,
                                       '*GG/*/*t1.nii.gz')))
            self.affine = img_loader.load_affine_matrix(list_IDsT1[0])
            return

        subvol = '_vol_' + str(crop_dim[0]) + 'x' + str(
            crop_dim[1]) + 'x' + str(crop_dim[2])
        self.sub_vol_path = self.root + '/brats2019/MICCAI_BraTS_2019_Data_Training/generated/' + mode + subvol + '/'
        utils.make_dirs(self.sub_vol_path)

        list_IDsT1 = sorted(
            glob.glob(os.path.join(self.training_path, '*GG/*/*t1.nii.gz')))
        list_IDsT1ce = sorted(
            glob.glob(os.path.join(self.training_path, '*GG/*/*t1ce.nii.gz')))
        list_IDsT2 = sorted(
            glob.glob(os.path.join(self.training_path, '*GG/*/*t2.nii.gz')))
        list_IDsFlair = sorted(
            glob.glob(os.path.join(self.training_path,
                                   '*GG/*/*_flair.nii.gz')))
        labels = sorted(
            glob.glob(os.path.join(self.training_path, '*GG/*/*_seg.nii.gz')))
        list_IDsT1, list_IDsT1ce, list_IDsT2, list_IDsFlair, labels = utils.shuffle_lists(
            list_IDsT1,
            list_IDsT1ce,
            list_IDsT2,
            list_IDsFlair,
            labels,
            seed=17)
        self.affine = img_loader.load_affine_matrix(list_IDsT1[0])

        if self.mode == 'train':
            print('Brats2019, Total data:', len(list_IDsT1))
            list_IDsT1 = list_IDsT1[:split_idx]
            list_IDsT1ce = list_IDsT1ce[:split_idx]
            list_IDsT2 = list_IDsT2[:split_idx]
            list_IDsFlair = list_IDsFlair[:split_idx]
            labels = labels[:split_idx]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT1ce,
                                           list_IDsT2,
                                           list_IDsFlair,
                                           labels,
                                           dataset_name="brats2019",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path)

        elif self.mode == 'val':
            list_IDsT1 = list_IDsT1[split_idx:]
            list_IDsT1ce = list_IDsT1ce[split_idx:]
            list_IDsT2 = list_IDsT2[split_idx:]
            list_IDsFlair = list_IDsFlair[split_idx:]
            labels = labels[split_idx:]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT1ce,
                                           list_IDsT2,
                                           list_IDsFlair,
                                           labels,
                                           dataset_name="brats2019",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path)
        elif self.mode == 'test':
            self.list_IDsT1 = sorted(
                glob.glob(os.path.join(self.testing_path, '*GG/*/*t1.nii.gz')))
            self.list_IDsT1ce = sorted(
                glob.glob(os.path.join(self.testing_path,
                                       '*GG/*/*t1ce.nii.gz')))
            self.list_IDsT2 = sorted(
                glob.glob(os.path.join(self.testing_path, '*GG/*/*t2.nii.gz')))
            self.list_IDsFlair = sorted(
                glob.glob(
                    os.path.join(self.testing_path, '*GG/*/*_flair.nii.gz')))
            self.labels = None
            # Todo inference code here

        utils.save_list(self.save_name, self.list)
示例#29
0
    def __init__(self,
                 args,
                 mode,
                 dataset_path='./datasets',
                 crop_dim=(32, 32, 32),
                 split_id=1,
                 samples=1000,
                 load=False):
        """
        :param mode: 'train','val','test'
        :param dataset_path: root dataset folder
        :param crop_dim: subvolume tuple
        :param fold_id: 1 to 10 values
        :param samples: number of sub-volumes that you want to create
        """
        self.mode = mode
        self.root = str(dataset_path)
        self.training_path = self.root + '/iseg_2019/iSeg-2019-Training/'
        self.testing_path = self.root + '/iseg_2019/iSeg-2019-Validation/'
        self.CLASSES = 4
        self.full_vol_dim = (144, 192, 256)  # slice, width, height
        self.crop_size = crop_dim
        self.threshold = args.threshold
        self.normalization = args.normalization
        self.augmentation = args.augmentation
        self.list = []
        self.samples = samples
        self.full_volume = None
        self.save_name = self.root + '/iseg_2019/iseg2019-list-' + mode + '-samples-' + str(
            samples) + '.txt'
        if self.augmentation:
            self.transform = augment3D.RandomChoice(transforms=[
                augment3D.GaussianNoise(mean=0, std=0.01),
                augment3D.RandomFlip(),
                augment3D.ElasticTransform()
            ],
                                                    p=0.5)
        if load:
            ## load pre-generated data
            self.list = utils.load_list(self.save_name)
            list_IDsT1 = sorted(
                glob.glob(os.path.join(self.training_path, '*T1.img')))
            self.affine = img_loader.load_affine_matrix(list_IDsT1[0])
            return

        subvol = '_vol_' + str(crop_dim[0]) + 'x' + str(
            crop_dim[1]) + 'x' + str(crop_dim[2])
        self.sub_vol_path = self.root + '/iseg_2019/generated/' + mode + subvol + '/'
        utils.make_dirs(self.sub_vol_path)

        list_IDsT1 = sorted(
            glob.glob(os.path.join(self.training_path, '*T1.img')))
        list_IDsT2 = sorted(
            glob.glob(os.path.join(self.training_path, '*T2.img')))
        labels = sorted(
            glob.glob(os.path.join(self.training_path, '*label.img')))
        self.affine = img_loader.load_affine_matrix(list_IDsT1[0])

        if self.mode == 'train':
            list_IDsT1 = list_IDsT1[:split_id]
            list_IDsT2 = list_IDsT2[:split_id]
            labels = labels[:split_id]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT2,
                                           labels,
                                           dataset_name="iseg2019",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           th_percent=self.threshold)

        elif self.mode == 'val':
            list_IDsT1 = list_IDsT1[split_id:]
            list_IDsT2 = list_IDsT2[:split_id:]
            labels = labels[split_id:]
            self.list = create_sub_volumes(list_IDsT1,
                                           list_IDsT2,
                                           labels,
                                           dataset_name="iseg2019",
                                           mode=mode,
                                           samples=samples,
                                           full_vol_dim=self.full_vol_dim,
                                           crop_size=self.crop_size,
                                           sub_vol_path=self.sub_vol_path,
                                           th_percent=self.threshold)

            self.full_volume = get_viz_set(list_IDsT1,
                                           list_IDsT2,
                                           labels,
                                           dataset_name="iseg2019")

        elif self.mode == 'test':
            self.list_IDsT1 = sorted(
                glob.glob(os.path.join(self.testing_path, '*T1.img')))
            self.list_IDsT2 = sorted(
                glob.glob(os.path.join(self.testing_path, '*T2.img')))
            self.labels = None
            # todo inference here

        utils.save_list(self.save_name, self.list)
示例#30
0
文件: train.py 项目: somaminami/DCL
def objective_func(trial):
    global config

    if type(args.num_trial) is int:
        if trial.number > args.num_trial:
            import sys
            sys.exit()

    # make dirs
    config.trainer.base_dir = os.path.join(args.optuna_dir,
                                           f"{trial.number:04}/")
    utils.make_dirs(config.trainer.base_dir + "log")
    utils.make_dirs(config.trainer.base_dir + "checkpoint")

    # change config
    # set loss funcs & gates
    for source_id, model_losses in enumerate(config.losses):
        for target_id, _ in enumerate(model_losses):
            loss_name = trial.suggest_categorical(
                f'{source_id:02}_{target_id:02}_loss',
                LOSS_LISTS[source_id][target_id])

            loss_args = copy.deepcopy(args_factory.losses[loss_name])
            if "gate" in loss_args.args:
                gate_name = trial.suggest_categorical(
                    f'{source_id:02}_{target_id:02}_gate',
                    GATE_LIST[source_id][target_id])
                loss_args.args.gate = copy.deepcopy(
                    args_factory.gates[gate_name])
            config.losses[source_id][target_id] = loss_args

    for model_id in range(len(config.models)):
        # set model
        model_name = trial.suggest_categorical(f"model_{model_id}_name",
                                               MODEL_LISTS[model_id])
        model = copy.deepcopy(args_factory.models[model_name])
        config.models[model_id].name = model.name
        config.models[model_id].args = model.args

        # set model weight
        is_cutoff = all([
            loss.args.gate.name == "CutoffGate"
            for loss in config.losses[model_id]
        ])
        is_ensemble = config.models[model_id].name == "Ensemble"
        if is_cutoff & (not is_ensemble):
            config.models[model_id].load_weight.path = model.load_weight.path
        else:
            config.models[model_id].load_weight.path = None

    config = copy.deepcopy(config)

    # save config
    utils.save_json(config, config.trainer.base_dir + r"log/config.json")

    # create object
    trainer, nets, criterions, optimizers, train_loader, test_loader, logs = create_object(
        config)

    # make kwargs
    kwargs = {"_trial": trial, "_callback": inform_optuna}

    # set seed
    trial.set_user_attr("seed", config.manualSeed)

    # raise exception if target model is pretrained.
    if config.models[0].load_weight.path is not None:

        class BlacklistError(optuna.structs.OptunaError):
            pass

        raise BlacklistError()

    # start trial
    trainer.train(nets,
                  criterions,
                  optimizers,
                  train_loader,
                  test_loader,
                  logs,
                  trial=trial,
                  **kwargs)

    acc = 100 - logs[0]["epoch_log"][config.trainer.epochs]["test_accuracy"]

    return acc