}, "hue_saturation": { "use": True, "min": -10, "max": 10 } } } } args.aug_settings = AttrDict(aug_settings) # Add to args. # Logging LOGGER = logging.getLogger(__name__) log_file = os.path.join('logs', '{}.log'.format(args.exp_name)) os.makedirs('logs', exist_ok=True) setup_logging(log_path=log_file, logger=LOGGER) if __name__ == '__main__': # Experiment directory. experiment_path = os.path.join('experiments', args.exp_name) os.makedirs(experiment_path, exist_ok=True) # Set cudnn profiling, add torchvision path. if torch.cuda.is_available(): cudnn.benchmark = True os.environ['TORCH_HOME'] = os.path.join( os.path.abspath(os.path.dirname(__file__)), 'torchvision') # Initialise trainer. trainer = CNNTrainer(args, logger=LOGGER)
sys.exit() def main() -> None: logger.info("--- start ---") # CSVの差分抽出 diff_df: DifferenceDf = DifferenceDf(csv_path=path) # csv作成 diff_df.execute() # 依頼件数取得 logger.info(f"件数: {diff_df.row_count} 行") if __name__ == "__main__": try: # OSチェック check_platform() # 引数をparse path, enc, debug = parse_arg() # loggerの設定 logger = setup_logging(conf_path=get_log_conf_path(is_debug=debug)) main() except Exception: logger.error(format_exc()) finally: logger.info("--- end ---")
wd = os.getcwd() sys.path.append(wd) from lib import alpaca from lib.utils import setup_logging credentials = alpaca.load_paper_credentials() api = alpaca_trade_api.REST(key_id=credentials['key_id'], secret_key=credentials['secret_key'], base_url=credentials['base_url']) # setup logging log_out = sys.argv[1] if len(sys.argv) > 1 else '/var/log/apps/alpaca/paper_trade_example.log' if log_out == 'stdout': logger = setup_logging() else: logger = setup_logging(file_name=log_out) def _get_prices(symbols, end_dt, max_workers=5): # Get the map of DataFrame price data from Alpaca's data API. start_dt = end_dt - pandas.Timedelta('50 days') start = start_dt.strftime('%Y-%m-%d') end = end_dt.strftime('%Y-%m-%d') def get_barset(symbols): return api.get_barset(symbols, 'day', limit = 50, start=start, end=end) # The maximum number of symbols we can request at once is 200. barset = None
if attempts_checkout: checkout_lst = CheckoutList() try: for attempt in attempts_checkout: checkout_lst.append((attempt, client, conn)) #Execute the checkout procedure for each item pool.map(checkout_procedure, checkout_lst) transaction.commit() except: transaction.abort() raise time.sleep(config.getint('checkout', 'mins_to_wait') * 60) pool.close if __name__ == '__main__': config = utils.balaio_config_from_env() utils.setup_logging(config) models.Session.configure(bind=models.create_engine_from_config(config)) print('Start checkout process...') main(config)
""" filepath = event.pathname if not os.path.basename(filepath).startswith('_'): if not zipfile.is_zipfile(filepath): logger.info('Invalid zipfile: %s.' % filepath) return None logger.debug('Adding %s to checkin processing pool.' % filepath) self.pool.add_job(filepath) if __name__ == '__main__': # App bootstrapping: # Setting up the app configuration, logging and SqlAlchemy Session. config = utils.balaio_config_from_env() utils.setup_logging(config) models.Session.configure(bind=models.create_engine_from_config(config)) # Setting up PyInotify event watcher. wm = pyinotify.WatchManager() handler = EventHandler(config=config) notifier = pyinotify.Notifier(wm, handler) wm.add_watch(config.get('monitor', 'watch_path').split(','), mask, rec=config.getboolean('monitor', 'recursive'), auto_add=config.getboolean('monitor', 'recursive')) logger.info('Watching %s.' % config.get('monitor', 'watch_path')) notifier.loop()
def logLevel(level=None): utils.setup_logging(root_folder, log_level = level)
""" parsed_l = data.parse_input_line(l) if parsed_l is None: return None reddit, text, url = parsed_l if not data.is_image_url(url): return False, reddit, text, text, url doc = tokenizer(text) tokens = [t.lower_ for t in doc] text_parsed = " ".join(tokens) return True, reddit, text, text_parsed, url if __name__ == "__main__": utils.setup_logging() parser = argparse.ArgumentParser() parser.add_argument("-d", "--data", default=data.DEFAULT_DATA_FILE, help="Data file to read, default=" + data.DEFAULT_DATA_FILE) parser.add_argument("-o", "--output", default=data.DEFAULT_OUTPUT_PREFIX, help="Output data prefix to produce. Suffixes will be added " "to this path, default=" + data.DEFAULT_OUTPUT_PREFIX) parser.add_argument("--limit", type=int, help="Optional limit of input lines to process, default=No limit") args = parser.parse_args() # using only tokenizer from spacy, this is much faster nlp = English() tokenizer = nlp.Defaults.create_tokenizer(nlp) data_path = pathlib.Path(args.data)
import os import sys import argparse from datetime import datetime import backtrader import pandas wd = os.getcwd() sys.path.append(wd) from lib import alpaca from lib.utils import setup_logging # setup logging logger = setup_logging() # moving average strategy class MovingAverageStretegy(backtrader.Strategy): params = dict(day_period=15, week_period=5) def log(self, txt, dt=None): dt = dt or self.datas[0].datetime.date(0) logger.info('%s, %s' % (dt.isoformat(), txt)) def __init__(self): sma_day = backtrader.indicators.SMA(self.data0, period=self.p.day_period) sma_week = backtrader.indicators.SMA(self.data1, period=self.p.week_period)
setattr(settings, 'num_input_channels', 1) elif settings.dataset == 'kitti_2015': setattr(settings, 'left_img_folder', 'image_2') setattr(settings, 'right_img_folder', 'image_3') setattr(settings, 'disparity_folder', 'disp_noc_0') setattr(settings, 'num_val', 40) setattr(settings, 'num_input_channels', 3) # Python logging. LOGGER = logging.getLogger(__name__) exp_dir = join('experiments', '{}'.format(settings.exp_name)) log_file = join(exp_dir, 'log.log') os.makedirs(exp_dir, exist_ok=True) os.makedirs(join(exp_dir, 'qualitative_samples'), exist_ok=True) setup_logging(log_path=log_file, log_level=settings.log_level, logger=LOGGER) settings_file = join(exp_dir, 'settings.log') with open(settings_file, 'w') as the_file: the_file.write(str(settings)) # Set random seed. # NOTE: The seed affects the train/val split if patch locations data is # created, useful for reproducing results.. random.seed(settings.seed) # Model. device = '/cpu:0' if tfe.num_gpus() == 0 else '/gpu:0' global_step = tf.Variable(0, trainable=False) with tf.device(device):
def logLevel(level=None): utils.setup_logging(root_folder, log_level=level)