def __call__(self, img):
        orig_input_height, orig_input_width, _ = img.shape
        #img = cv2.resize(orig_img, (640, 640))
        input_height, input_width, _ = img.shape
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img = np.asarray(img, dtype=np.float32) / 255.0
        img = img.transpose(2, 0, 1)

        # forward
        x_data = img[np.newaxis, :, :, :]
        x = Variable(x_data)
        if self.gpu >= 0:
            x.to_gpu()
        pred = self.model.predict(x)
        x, y, w, h, conf, prob = pred

        # parse results
        _, _, _, grid_h, grid_w = x.shape
        x = F.reshape(x, (self.n_boxes, grid_h, grid_w)).data
        y = F.reshape(y, (self.n_boxes, grid_h, grid_w)).data
        w = F.reshape(w, (self.n_boxes, grid_h, grid_w)).data
        h = F.reshape(h, (self.n_boxes, grid_h, grid_w)).data
        conf = F.reshape(conf, (self.n_boxes, grid_h, grid_w)).data
        prob = F.transpose(
            F.reshape(prob,
                      (self.n_boxes, self.n_classes_yolo, grid_h, grid_w)),
            (1, 0, 2, 3)).data
        detected_indices = (conf * prob).max(axis=0) > self.detection_thresh
        if self.gpu >= 0:
            x = cuda.to_cpu(x)
            y = cuda.to_cpu(y)
            w = cuda.to_cpu(w)
            h = cuda.to_cpu(h)
            conf = cuda.to_cpu(conf)
            prob = cuda.to_cpu(prob)
            detected_indices = cuda.to_cpu(detected_indices)

        results = []
        for i in range(detected_indices.sum()):
            results.append({
                "label":
                self.labels[prob.transpose(1, 2, 3,
                                           0)[detected_indices][i].argmax()],
                "probs":
                prob.transpose(1, 2, 3, 0)[detected_indices][i],
                "conf":
                conf[detected_indices][i],
                "objectness":
                conf[detected_indices][i] *
                prob.transpose(1, 2, 3, 0)[detected_indices][i].max(),
                "box":
                Box(x[detected_indices][i] * orig_input_width,
                    y[detected_indices][i] * orig_input_height,
                    w[detected_indices][i] * orig_input_width,
                    h[detected_indices][i] * orig_input_height).crop_region(
                        orig_input_height, orig_input_width)
            })

        # nms
        nms_results = nms(results, self.iou_thresh)
        return nms_results
示例#2
0
    def __call__(self, input_x, t, ignore_t):
        if isinstance(input_x, chainer.Variable):
            device = cuda.get_device(input_x.data)
        else:
            device = cuda.get_device(input_x)
        xp = self.predictor.xp
        with device:
            output = self.predictor(input_x)
            batch_size, _, grid_h, grid_w = output.shape
            self.seen += batch_size
            x, y, w, h, conf, prob = F.split_axis(F.reshape(
                output, (batch_size, self.predictor.n_boxes,
                         self.predictor.n_classes + 5, grid_h, grid_w)),
                                                  (1, 2, 3, 4, 5),
                                                  axis=2)
            x = F.sigmoid(x)
            y = F.sigmoid(y)
            conf = F.sigmoid(conf)
            prob = F.transpose(prob, (0, 2, 1, 3, 4))
            prob = F.softmax(prob)

            # training labels
            tw = np.zeros(w.shape, dtype=np.float32)
            th = np.zeros(h.shape, dtype=np.float32)
            tx = np.tile(0.5, x.shape).astype(np.float32)
            ty = np.tile(0.5, y.shape).astype(np.float32)

            # set low learning rate for bounding boxes that have no object
            if self.seen < self.unstable_seen:
                box_learning_scale = np.tile(0.1, x.shape).astype(np.float32)
            else:
                box_learning_scale = np.tile(0, x.shape).astype(np.float32)

            tconf = np.zeros(conf.shape, dtype=np.float32)
            conf_learning_scale = np.zeros(conf.shape, dtype=np.float32)
            if xp == np:
                conf_data = conf.data.copy()
            else:
                conf_data = cuda.to_cpu(conf.data)

            tprob = prob.data.copy()

            x_shift = np.broadcast_to(np.arange(grid_w, dtype=np.float32),
                                      x.shape[1:])
            y_shift = np.broadcast_to(
                np.arange(grid_h, dtype=np.float32).reshape(grid_h, 1),
                y.shape[1:])
            w_anchor = np.broadcast_to(
                np.reshape(
                    np.array(self.anchors, dtype=np.float32)[:, 0],
                    (self.predictor.n_boxes, 1, 1, 1)), w.shape[1:])
            h_anchor = np.broadcast_to(
                np.reshape(
                    np.array(self.anchors, dtype=np.float32)[:, 1],
                    (self.predictor.n_boxes, 1, 1, 1)), h.shape[1:])
            x_data = cuda.to_cpu(x.data)
            y_data = cuda.to_cpu(y.data)
            w_data = cuda.to_cpu(w.data)
            h_data = cuda.to_cpu(h.data)
            best_ious = []
            for batch in range(batch_size):
                n_truth_boxes = len(t[batch])
                box_x = (x_data[batch] + x_shift) / grid_w
                box_y = (y_data[batch] + y_shift) / grid_h
                box_w = np.exp(w_data[batch]) * w_anchor / grid_w
                box_h = np.exp(h_data[batch]) * h_anchor / grid_h

                ious = []
                for truth_index in range(n_truth_boxes):
                    truth_box_x = np.broadcast_to(
                        np.array(t[batch][truth_index]["x"], dtype=np.float32),
                        box_x.shape)
                    truth_box_y = np.broadcast_to(
                        np.array(t[batch][truth_index]["y"], dtype=np.float32),
                        box_y.shape)
                    truth_box_w = np.broadcast_to(
                        np.array(t[batch][truth_index]["w"], dtype=np.float32),
                        box_w.shape)
                    truth_box_h = np.broadcast_to(
                        np.array(t[batch][truth_index]["h"], dtype=np.float32),
                        box_h.shape)
                    ious.append(
                        multi_box_iou(
                            Box(box_x, box_y, box_w, box_h),
                            Box(truth_box_x, truth_box_y, truth_box_w,
                                truth_box_h)))
                if len(ious) > 0:
                    ious = np.asarray(ious)
                    best_ious.append(np.max(ious, axis=0))
                else:
                    best_ious.append(np.zeros_like(x_data[0]))
            best_ious = np.array(best_ious)

            # keep confidence of anchor that has more confidence than threshold
            tconf[best_ious > self.thresh] = conf.data.get()[
                best_ious > self.thresh]
            conf_learning_scale[best_ious > self.thresh] = 0
            conf_data[best_ious > self.thresh] = 0

            # ignored regions are not considered either positive or negative

            best_ious = []
            for batch in range(batch_size):
                n_truth_boxes = len(ignore_t[batch])
                box_x = (x_data[batch] + x_shift) / grid_w
                box_y = (y_data[batch] + y_shift) / grid_h
                box_w = np.exp(w_data[batch]) * w_anchor / grid_w
                box_h = np.exp(h_data[batch]) * h_anchor / grid_h

                ious = []
                for truth_index in range(n_truth_boxes):
                    truth_box_x = np.broadcast_to(
                        np.array(ignore_t[batch][truth_index]["x"],
                                 dtype=np.float32), box_x.shape)
                    truth_box_y = np.broadcast_to(
                        np.array(ignore_t[batch][truth_index]["y"],
                                 dtype=np.float32), box_y.shape)
                    truth_box_w = np.broadcast_to(
                        np.array(ignore_t[batch][truth_index]["w"],
                                 dtype=np.float32), box_w.shape)
                    truth_box_h = np.broadcast_to(
                        np.array(ignore_t[batch][truth_index]["h"],
                                 dtype=np.float32), box_h.shape)
                    ious.append(
                        multi_box_iou(
                            Box(box_x, box_y, box_w, box_h),
                            Box(truth_box_x, truth_box_y, truth_box_w,
                                truth_box_h)))
                if len(ious) > 0:
                    ious = np.asarray(ious)
                    best_ious.append(np.max(ious, axis=0))
                else:
                    best_ious.append(np.zeros_like(x_data[0]))
            best_ious = np.array(best_ious)

            # do not update confidence for ignored regions
            tconf[best_ious > self.ignore_thresh] = conf.data.get()[
                best_ious > self.ignore_thresh]
            conf_learning_scale[best_ious > self.ignore_thresh] = 0
            conf_data[best_ious > self.ignore_thresh] = 0

            # adjust x, y, w, h, conf, prob of anchor boxes that have objects
            abs_anchors = self.anchors / np.array([grid_w, grid_h])
            for batch in range(batch_size):
                for truth_box in t[batch]:
                    truth_w = int(float(truth_box["x"]) * grid_w)
                    truth_h = int(float(truth_box["y"]) * grid_h)
                    truth_n = 0
                    best_iou = 0.0
                    for anchor_index, abs_anchor in enumerate(abs_anchors):
                        iou = box_iou(
                            Box(0, 0, float(truth_box["w"]),
                                float(truth_box["h"])),
                            Box(0, 0, abs_anchor[0], abs_anchor[1]))
                        if best_iou < iou:
                            best_iou = iou
                            truth_n = anchor_index

                    box_learning_scale[batch, truth_n, :, truth_h,
                                       truth_w] = 1.0
                    tx[batch, truth_n, :, truth_h,
                       truth_w] = float(truth_box["x"]) * grid_w - truth_w
                    ty[batch, truth_n, :, truth_h,
                       truth_w] = float(truth_box["y"]) * grid_h - truth_h
                    tw[batch, truth_n, :, truth_h, truth_w] = np.log(
                        float(truth_box["w"]) / abs_anchors[truth_n][0])
                    th[batch, truth_n, :, truth_h, truth_w] = np.log(
                        float(truth_box["h"]) / abs_anchors[truth_n][1])
                    tprob[batch, :, truth_n, truth_h, truth_w] = 0
                    tprob[batch,
                          int(truth_box["label"]), truth_n, truth_h,
                          truth_w] = 1

                    full_truth_box = Box(float(truth_box["x"]),
                                         float(truth_box["y"]),
                                         float(truth_box["w"]),
                                         float(truth_box["h"]))
                    predicted_box = Box(
                        (x[batch][truth_n][0][truth_h][truth_w].data.get() +
                         truth_w) / grid_w,
                        (y[batch][truth_n][0][truth_h][truth_w].data.get() +
                         truth_h) / grid_h,
                        np.exp(
                            w[batch][truth_n][0][truth_h][truth_w].data.get())
                        * abs_anchors[truth_n][0],
                        np.exp(
                            h[batch][truth_n][0][truth_h][truth_w].data.get())
                        * abs_anchors[truth_n][1])
                    predicted_iou = box_iou(full_truth_box, predicted_box)
                    tconf[batch, truth_n, :, truth_h, truth_w] = predicted_iou
                    conf_learning_scale[batch, truth_n, :, truth_h,
                                        truth_w] = 10.0
                    conf_data[batch, truth_n, :, truth_h, truth_w] = 0

            n_all = np.prod(conf_learning_scale.shape[1:])
            for batch in range(batch_size):
                n_truth_boxes = len(t[batch])
                n_top = np.maximum(n_truth_boxes * 3, 6)
                ids = np.argsort(conf_data[batch].ravel())
                flags = np.zeros(n_all, dtype=bool)
                flags[ids[-n_top:]] = True
                conf_learning_scale[batch][flags.reshape(
                    conf_learning_scale[batch].shape)] = 10.0

            tx = cuda.to_gpu(tx)
            ty = cuda.to_gpu(ty)
            tw = cuda.to_gpu(tw)
            th = cuda.to_gpu(th)
            tconf = cuda.to_gpu(tconf)
            tprob = cuda.to_gpu(tprob)

            box_learning_scale = cuda.to_gpu(box_learning_scale)
            conf_learning_scale = cuda.to_gpu(conf_learning_scale)

            x_loss = F.sum((tx - x)**2 * box_learning_scale) / 2
            y_loss = F.sum((ty - y)**2 * box_learning_scale) / 2
            w_loss = F.sum((tw - w)**2 * box_learning_scale) / 2
            h_loss = F.sum((th - h)**2 * box_learning_scale) / 2
            c_loss = F.sum((tconf - conf)**2 * conf_learning_scale) / 2
            p_loss = F.sum((tprob - prob)**2) / 2
            return x_loss, y_loss, w_loss, h_loss, c_loss, p_loss
示例#3
0
    def __call__(self, input_x, t, train=True):
        output_fcn, output_yolo = self.predictor(input_x, train=train)
        if self.FCN:
            if train:
                loss_fcn = F.softmax_cross_entropy(output_fcn, t)
                reporter.report({'loss': loss_fcn}, self)
                return loss_fcn
            else:
                loss = F.softmax(output_fcn)
                return loss
        batch_size, _, grid_h, grid_w = output_yolo.shape
        self.seen += batch_size
        x, y, w, h, conf, prob = F.split_axis(F.reshape(
            output_yolo, (batch_size, self.predictor.n_boxes,
                          self.predictor.n_classes_yolo + 5, grid_h, grid_w)),
                                              (1, 2, 3, 4, 5),
                                              axis=2)
        x = F.sigmoid(x)
        y = F.sigmoid(y)
        conf = F.sigmoid(conf)
        prob = F.transpose(prob, (0, 2, 1, 3, 4))
        prob = F.softmax(prob)

        tw = np.zeros(
            w.shape,
            dtype=np.float32)  # wとhが0になるように学習(e^wとe^hは1に近づく -> 担当するbboxの倍率1)
        th = np.zeros(h.shape, dtype=np.float32)
        tx = np.tile(0.5, x.shape).astype(np.float32)  # 活性化後のxとyが0.5になるように学習()
        ty = np.tile(0.5, y.shape).astype(np.float32)

        if self.seen < self.unstable_seen:
            box_learning_scale = np.tile(0.1, x.shape).astype(np.float32)
        else:
            box_learning_scale = np.tile(0, x.shape).astype(np.float32)

        tconf = np.zeros(
            conf.shape, dtype=np.float32
        )  # confidenceのtruthは基本0、iouがthresh以上のものは学習しない、ただしobjectの存在するgridのbest_boxのみ真のIOUに近づかせる
        conf_learning_scale = np.tile(0.1, conf.shape).astype(np.float32)

        tprob = prob.data.copy()  # best_anchor以外は学習させない(自身との二乗和誤差 = 0)

        # 全bboxとtruthのiouを計算(batch単位で計算する)
        x_shift = Variable(
            np.broadcast_to(np.arange(grid_w, dtype=np.float32), x.shape[1:]))
        y_shift = Variable(
            np.broadcast_to(
                np.arange(grid_h, dtype=np.float32).reshape(grid_h, 1),
                y.shape[1:]))
        w_anchor = Variable(
            np.broadcast_to(
                np.reshape(
                    np.array(self.anchors, dtype=np.float32)[:, 0],
                    (self.predictor.n_boxes, 1, 1, 1)), w.shape[1:]))
        h_anchor = Variable(
            np.broadcast_to(
                np.reshape(
                    np.array(self.anchors, dtype=np.float32)[:, 1],
                    (self.predictor.n_boxes, 1, 1, 1)), h.shape[1:]))
        x_shift.to_gpu(), y_shift.to_gpu(), w_anchor.to_gpu(), h_anchor.to_gpu(
        )
        best_ious = []
        for batch in range(batch_size):
            #n_truth_boxes = len(t[batch])
            n_truth_boxes = int(sum(x[0] != 10.0 for x in t[batch]))  # ??
            box_x = (x[batch] + x_shift) / grid_w
            box_y = (y[batch] + y_shift) / grid_h
            box_w = F.exp(w[batch]) * w_anchor / grid_w
            box_h = F.exp(h[batch]) * h_anchor / grid_h

            ious = []
            for truth_index in range(n_truth_boxes):
                t = chainer.cuda.to_cpu(t)  # ??
                truth_box_x = Variable(
                    np.broadcast_to(
                        np.array(t[batch][truth_index][1], dtype=np.float32),
                        box_x.shape))
                truth_box_y = Variable(
                    np.broadcast_to(
                        np.array(t[batch][truth_index][2], dtype=np.float32),
                        box_y.shape))
                truth_box_w = Variable(
                    np.broadcast_to(
                        np.array(t[batch][truth_index][3], dtype=np.float32),
                        box_w.shape))
                truth_box_h = Variable(
                    np.broadcast_to(
                        np.array(t[batch][truth_index][4], dtype=np.float32),
                        box_h.shape))
                truth_box_x.to_gpu(), truth_box_y.to_gpu(), truth_box_w.to_gpu(
                ), truth_box_h.to_gpu()
                ious.append(
                    multi_box_iou(
                        Box(box_x, box_y, box_w, box_h),
                        Box(truth_box_x, truth_box_y, truth_box_w,
                            truth_box_h)).data.get())
            if ious:
                ious = np.array(ious)
                best_ious.append(np.max(ious, axis=0))
            else:
                best_ious.append(0)
        best_ious = np.array(best_ious)

        # 一定以上のiouを持つanchorに対しては、confを0に下げないようにする(truthの周りのgridはconfをそのまま維持)。
        tconf[best_ious > self.thresh] = conf.data.get()[
            best_ious > self.thresh]
        conf_learning_scale[best_ious > self.thresh] = 0

        # objectの存在するanchor boxのみ、x、y、w、h、conf、probを個別修正
        abs_anchors = self.anchors / np.array([grid_w, grid_h])
        for batch in range(batch_size):
            for truth_box in t[batch]:
                if truth_box[0] == 10.0:  # ??
                    continue
                truth_w = int(float(truth_box[1]) * grid_w)
                truth_h = int(float(truth_box[2]) * grid_h)
                truth_n = 0
                best_iou = 0.0
                for anchor_index, abs_anchor in enumerate(abs_anchors):
                    iou = box_iou(
                        Box(0, 0, float(truth_box[3]), float(truth_box[4])),
                        Box(0, 0, abs_anchor[0], abs_anchor[1]))
                    if best_iou < iou:
                        best_iou = iou
                        truth_n = anchor_index

                # objectの存在するanchorについて、centerを0.5ではなく、真の座標に近づかせる。anchorのスケールを1ではなく真のスケールに近づかせる。学習スケールを1にする。
                box_learning_scale[batch, truth_n, :, truth_h, truth_w] = 1.0
                tx[batch, truth_n, :, truth_h,
                   truth_w] = float(truth_box[1]) * grid_w - truth_w
                ty[batch, truth_n, :, truth_h,
                   truth_w] = float(truth_box[2]) * grid_h - truth_h
                tw[batch, truth_n, :, truth_h, truth_w] = np.log(
                    float(truth_box[3]) / abs_anchors[truth_n][0])
                th[batch, truth_n, :, truth_h, truth_w] = np.log(
                    float(truth_box[4]) / abs_anchors[truth_n][1])
                tprob[batch, :, truth_n, truth_h, truth_w] = 0
                tprob[batch, int(truth_box[0]), truth_n, truth_h, truth_w] = 1

                # IOUの観測
                full_truth_box = Box(float(truth_box[1]), float(truth_box[2]),
                                     float(truth_box[3]), float(truth_box[4]))
                predicted_box = Box(
                    (x[batch][truth_n][0][truth_h][truth_w].data.get() +
                     truth_w) / grid_w,
                    (y[batch][truth_n][0][truth_h][truth_w].data.get() +
                     truth_h) / grid_h,
                    np.exp(w[batch][truth_n][0][truth_h][truth_w].data.get()) *
                    abs_anchors[truth_n][0],
                    np.exp(h[batch][truth_n][0][truth_h][truth_w].data.get()) *
                    abs_anchors[truth_n][1])
                predicted_iou = box_iou(full_truth_box, predicted_box)
                tconf[batch, truth_n, :, truth_h, truth_w] = predicted_iou
                conf_learning_scale[batch, truth_n, :, truth_h, truth_w] = 10.0

            # debug prints
            maps = F.transpose(prob[batch], (2, 3, 1, 0)).data
        #print("seen = %d" % self.seen)

        # loss計算
        tx, ty, tw, th, tconf, tprob = Variable(tx), Variable(ty), Variable(
            tw), Variable(th), Variable(tconf), Variable(tprob)
        box_learning_scale, conf_learning_scale = Variable(
            box_learning_scale), Variable(conf_learning_scale)
        tx.to_gpu(), ty.to_gpu(), tw.to_gpu(), th.to_gpu(), tconf.to_gpu(
        ), tprob.to_gpu()
        box_learning_scale.to_gpu()
        conf_learning_scale.to_gpu()

        x_loss = F.sum((tx - x)**2 * box_learning_scale) / 2
        y_loss = F.sum((ty - y)**2 * box_learning_scale) / 2
        w_loss = F.sum((tw - w)**2 * box_learning_scale) / 2
        h_loss = F.sum((th - h)**2 * box_learning_scale) / 2
        c_loss = F.sum((tconf - conf)**2 * conf_learning_scale) / 2
        p_loss = F.sum((tprob - prob)**2) / 2
        #print("x_loss: %f  y_loss: %f  w_loss: %f  h_loss: %f  c_loss: %f   p_loss: %f" %
        #    (F.sum(x_loss).data, F.sum(y_loss).data, F.sum(w_loss).data, F.sum(h_loss).data, F.sum(c_loss).data, F.sum(p_loss).data)
        #)
        reporter.report({'x_loss': F.sum(x_loss).data}, self)
        reporter.report({'y_loss': F.sum(y_loss).data}, self)
        reporter.report({'w_loss': F.sum(w_loss).data}, self)
        reporter.report({'h_loss': F.sum(h_loss).data}, self)
        reporter.report({'c_loss': F.sum(c_loss).data}, self)
        reporter.report({'p_loss': F.sum(p_loss).data}, self)

        loss_yolo = x_loss + y_loss + w_loss + h_loss + c_loss + p_loss
        reporter.report({'loss': loss_yolo}, self)
        return loss_yolo