def main(): args = docopt(__doc__) names_f = args['--names'] nodes_f = args['--nodes'] # Parse names.dmp, nodes.dmp nodesDB_default = join(dirname(abspath(__file__)), "../data/nodesDB.txt") nodesDB, nodesDB_f = BtIO.parseNodesDB(nodes=nodes_f, names=names_f, nodesDB=None, nodesDBdefault=nodesDB_default)
def main(): args = docopt(__doc__) names_f = args['--names'] nodes_f = args['--nodes'] # Parse names.dmp, nodes.dmp nodesDB_default = join(blobtools.DATADIR, "nodesDB.txt") nodesDB, nodesDB_f = BtIO.parseNodesDB(nodes=nodes_f, names=names_f, nodesDB=None, nodesDBdefault=nodesDB_default)
def main(): #main_dir = dirname(__file__) args = docopt(__doc__) fasta_f = args['--infile'] fasta_type = args['--type'] bam_fs = args['--bam'] cov_fs = args['--cov'] cas_fs = args['--cas'] hit_fs = args['--hitsfile'] prefix = args['--out'] nodesDB_f = args['--db'] names_f = args['--names'] estimate_cov_flag = True if not args['--calculate_cov'] else False nodes_f = args['--nodes'] taxrules = args['--taxrule'] try: min_bitscore_diff = float(args['--min_diff']) min_score = float(args['--min_score']) except ValueError(): BtLog.error('45') tax_collision_random = args['--tax_collision_random'] title = args['--title'] # outfile out_f = BtIO.getOutFile("blobDB", prefix, "json") if not (title): title = out_f # coverage if not (fasta_type) and not bam_fs and not cov_fs and not cas_fs: BtLog.error('1') cov_libs = [BtCore.CovLibObj('bam' + str(idx), 'bam', lib_f) for idx, lib_f in enumerate(bam_fs)] + \ [BtCore.CovLibObj('cas' + str(idx), 'cas', lib_f) for idx, lib_f in enumerate(cas_fs)] + \ [BtCore.CovLibObj('cov' + str(idx), 'cov', lib_f) for idx, lib_f in enumerate(cov_fs)] # taxonomy hit_libs = [ BtCore.HitLibObj('tax' + str(idx), 'tax', lib_f) for idx, lib_f in enumerate(hit_fs) ] # Create BlobDB object blobDb = BtCore.BlobDb(title) blobDb.version = interface.__version__ # Parse FASTA blobDb.parseFasta(fasta_f, fasta_type) # Parse nodesDB OR names.dmp, nodes.dmp nodesDB_default = join(dirname(abspath(__file__)), "../data/nodesDB.txt") nodesDB, nodesDB_f = BtIO.parseNodesDB(nodes=nodes_f, names=names_f, nodesDB=nodesDB_f, nodesDBdefault=nodesDB_default) blobDb.nodesDB_f = nodesDB_f # Parse similarity hits if (hit_libs): blobDb.parseHits(hit_libs) if not taxrules: if len(hit_libs) > 1: taxrules = ['bestsum', 'bestsumorder'] else: taxrules = ['bestsum'] blobDb.computeTaxonomy(taxrules, nodesDB, min_score, min_bitscore_diff, tax_collision_random) else: print(BtLog.warn_d['0']) # Parse coverage blobDb.parseCoverage(covLibObjs=cov_libs, estimate_cov=estimate_cov_flag, prefix=prefix) # Generating BlobDB and writing to file print(BtLog.status_d['7'] % out_f) BtIO.writeJson(blobDb.dump(), out_f)