num = 5 lst = mList if letter == "V": num = 9 lst = vList if letter == "W": num = 9 lst = wList j = 0 for i in range(num): while letter + str(j) in lst: j += 1 if j > (150 - len(lst)) - 1: break G = z[0][letters[letter]][j] G = t.main_component(G=G, report=False) pos = t.get_pos(G) l_inputs.append((G, pos)) l_labels.append(letter + str(j)) l_target.append(letter) j += 1 matrix = classify.get_matrix(l_inputs, frames, True, True, average="median") flat = classify.condense(matrix) # This plot may render with the axes flippeed points = classify.mds(input_list=l_inputs, target_list=l_target, frames=frames, D=matrix, colorize=True,
for i in range(0, 32): count += 2250 - i print(count) outliers = [ ] # Make sure you comment this out if you stop and try to pick up again # otherwise you'll lose your progress num = letters["K"] # Change the "K" to be the letter you want, then run letter = key[num] # Shouldn't need to touch anything else for i in range(150): g = z[0][num][i] g = t.main_component(G=g, report=False) nx.draw(g, t.get_pos(g)) plt.title(str(i)) plt.show() print("\nType 'exit' at any time to stop.") answer = input( "Outlier? Press enter for no. \nType anything else (except for 'exit') for yes. " ) if answer == "exit": print("\nYou stopped at", letter + str(i)) print("\nMake sure you don't lose the outliers you've picked so far.") break elif answer != "": one = letter + str(i) outliers.append(one)