示例#1
0
def delayPlusPropModel(k1, k2):
    """
    Args:
        k1, k2 (int): gains

    Returns:
        An instance of the SystemFunction class that describes the behaviour of 
        the system when the robot has a delay­ plus-proportional controller
    """
    T = 0.1
    V = 0.1
    # Controller
    module1 = sf.Cascade(sd.R(), sf.Gain(k2))
    controller = sf.FeedforwardAdd(sf.Gain(k1), module1)
    # Plant 1
    module1 = sf.Cascade(sf.R(), sf.Gain(T))
    module2 = sf.FeedbackAdd(sf.Gain(1), sf.R())
    plant1 = sf.Cascade(module1, module2)
    # Plant 2
    module1 = sf.Cascade(sf.Gain(V * T), sf.R())
    module2 = sf.FeedbackAdd(sf.Gain(1), sf.R())
    plant2 = sf.Cascade(module1, module2)
    # Combine the three parts
    module1 = sf.Cascade(controller, sf.Cascade(plant1, plant2))
    sys = sf.FeedbackSubtract(module1)
    return sys
示例#2
0
def anglePlusPropModel(k3, k4):
	T = 0.1
	V = 0.1

	# plant 1 is as before
	plant1 = sf.Cascade(sf.Cascade(sf.Gain(T), sf.R()), sf.FeedbackAdd(sf.Gain(1), sf.R()))
	# plant2 is as before
	plant2 = sf.Cascade(sf.Cascade(sf.Gain(T * V), sf.R()), sf.FeedbackAdd(sf.Gain(1), sf.R()))
	# The complete system
	sys = sf.FeedbackSubtract(sf.Cascade(sf.Cascade(sf.Gain(k3), sf.FeedbackSubtract(plant1, sf.Gain(k4))), plant2))

	return sys
示例#3
0
def delayPlusPropModel(k1, k2):
	T = 0.1
	V = 0.1

	# Controller:  your code here
	controller = sf.FeedbackSubtract(sf.Gain(k1), sf.Cascade(sf.Gain(k2), sf.R()))
	# The plant is like the one for the proportional controller.  Use
	# your definition from last week.]
	plant1 = sf.Cascade(sf.Cascade(sf.Gain(T), sf.R()), sf.FeedbackAdd(sf.Gain(1), sf.R()))
	plant2 = sf.Cascade(sf.Cascade(sf.Gain(T * V), sf.R()), sf.FeedbackAdd(sf.Gain(1), sf.R()))
	# Combine the three parts
	sys = sf.FeedbackSubtract(sf.Cascade(sf.Cascade(controller, plant1), plant2))
	return sys
def delayPlusPropModel(k1, k2):
    T = 0.1
    V = 0.1

    # Controller:  your code here
    ##    controller = sf.Sum(sf.Gain(k1), sf.Cascade(sf.Gain(k2), sf.R()))
    controller = sf.SystemFunction(poly.Polynomial([k2, k1]),
                                   poly.Polynomial([1]))
    # The plant is like the one for the proportional controller.  Use
    # your definition from last week.
    plant1 = sf.Cascade(sf.Gain(0.1), sf.FeedbackAdd(sf.R(), sf.Gain(1)))
    plant2 = sf.Cascade(sf.Gain(0.1 * 0.1), sf.FeedbackAdd(sf.R(), sf.Gain(1)))
    # Combine the three parts
    sys = sf.FeedbackSubtract(
        sf.Cascade(controller, sf.Cascade(plant1, plant2)), sf.Gain(1))
    return sys
示例#5
0
def anglePlusPropModel(k3, k4):
    """
    Takes gains k3 and k4 as input and returns a SystemFunction that describes
    the system with angle-plus­ proportional control
    """
    T = 0.1
    V = 0.1

    # Plant 1 as before
    module1 = sf.Cascade(sf.R(), sf.Gain(T))
    module2 = sf.FeedbackAdd(sf.Gain(1), sf.R())
    plant1 = sf.Cascade(module1, module2)
    # Plant 2 as before
    module1 = sf.Cascade(sf.Gain(V * T), sf.R())
    module2 = sf.FeedbackAdd(sf.Gain(1), sf.R())
    plant2 = sf.Cascade(module1, module2)
    # The complete system
    module1 = sf.FeedbackSubtract(plant1, sf.Gain(k4))
    module2 = sf.Cascade(sf.Gain(k3), module1)
    sys = sf.FeedbackSubtract(sf.Cascade(module2, plant2))
    return sys
示例#6
0
def delayPlusPropModel(k1, k2):
    T = 0.1
    V = 0.1
    print k2

    # Controller:  your code here
    # omega[n] = k1 * e[n] + k2 * e[n-1].
    controller = sf.FeedforwardAdd(sf.Gain(k1),
                                   sf.Cascade(sf.R(), sf.Gain(k2)))
    # print controller
    # The plant is like the one for the proportional controller.  Use
    # your definition from last week.
    # θ[n]=T∙ω[n-1]+θ[n-1]
    plant1 = sf.Cascade(sf.Cascade(sf.R(), sf.Gain(T)),
                        sf.FeedbackAdd(sf.Gain(1), sf.R()))
    # d_0 [n]=VT∙sinθ[n-1]+d_0 [n-1]≈VT∙θ[n-1]+d_0 [n-1]
    plant2 = sf.Cascade(sf.Cascade(sf.R(), sf.Gain(T * V)),
                        sf.FeedbackAdd(sf.Gain(1), sf.R()))
    # Combine the three parts
    sys = sf.FeedbackSubtract(
        sf.Cascade(sf.Cascade(controller, plant1), plant2), sf.Gain(1))
    # print sys
    return sys
def motorModel(T):
    """
    Takes V_c as input and generates Ωh as output through the equation
    sf.Gain((k_m * T) / (k_b * k_m * T + r_m))

    Args:
        T (int): a timestep, the length of time between samples

    Returns:
        an instance of the SystemFunction class which represents a motor
    """
    system1 = sf.Cascade(sf.Gain(k_m / r_m), sf.R())
    system2 = sf.Cascade(sf.Gain(T), sf.FeedbackAdd(sf.Gain(1), sf.R()))
    system3 = sf.Cascade(system1, system2)
    return sf.FeedbackSubtract(system3, sf.Gain(k_b))
def integrator(T):
    """
    Takes as its input the motor’s angular velocity Ωh, and outputs the motor’s 
    angular position Θh

    Args:
        T (int): a timestep, the length of time between samples

    Returns:
        an instance of the SystemFunction class which represents an integrator 
        with the appropriate timestep
    """
    system1 = sf.Cascade(sf.R(), sf.Gain(T))
    system2 = sf.FeedbackAdd(sf.Gain(1), sf.R())
    return sf.Cascade(system1, system2)
示例#9
0
def plantSF(T):
    dist = 50
    return sf.FeedbackAdd(-sf.Gain(T), sf.R(dist))
示例#10
0
def plantSF(T):
    return sf.Cascade(sf.Gain(-T), sf.FeedbackAdd(sf.R, sf.Gain(1)))
def plant1(T):
   return sf.Cascade(sf.Gain(T), sf.FeedbackAdd(sf.R(), sf.Gain(1)))
def plant2(T, V):
   return sf.Cascade(sf.Gain(V*T), sf.FeedbackAdd(sf.R(), sf.Gain(1)))