def blank_image_fits(filename, maskname, outfile = None, inverse = False, blankval = 0.): """ Set to "blankval" all the pixels inside the given region if inverse=True, set to "blankval" pixels outside region. filename: fits file region: ds9 region outfile: output name inverse: reverse region mask blankval: pixel value to set """ if (outfile == None): outfile = filename with pyfits.open(maskname) as fits: mask = fits[0].data if (inverse): mask = ~(mask.astype(bool)) with pyfits.open(filename) as fits: data = fits[0].data assert mask.shape == data.shape # mask and data should be same shape sum_before = np.sum(data) data[mask] = blankval logger.debug("%s: Blanking (%s): sum of values: %f -> %f" % (filename, maskname, sum_before, np.sum(data))) fits.writeto(outfile, overwrite=True)
def getNchan(self): """ Find number of channels """ with tables.table(self.pathMS + "/SPECTRAL_WINDOW", ack=False) as t: nchan = t.getcol("NUM_CHAN") assert (nchan[0] == nchan).all() # all SpWs have same channels? logger.debug("%s: channel number: %i", self.pathMS, nchan[0]) return nchan[0]
def getChanband(self): """ Find bandwidth of a channel in Hz """ with tables.table(self.pathMS + "/SPECTRAL_WINDOW", ack=False) as t: chan_w = t.getcol("CHAN_WIDTH")[0] assert all(x == chan_w[0] for x in chan_w) # all chans have same width logger.debug("%s: channel width (MHz): %f", self.pathMS, chan_w[0] / 1.e6) return chan_w[0]
def getTimeInt(self): """ Get time interval in seconds """ with tables.table(self.pathMS, ack=False) as t: nTimes = len(set(t.getcol("TIME"))) with tables.table(self.pathMS + "/OBSERVATION", ack=False) as t: deltat = (t.getcol("TIME_RANGE")[0][1] - t.getcol("TIME_RANGE")[0][0]) / nTimes logger.debug("%s: time interval (seconds): %f", self.pathMS, deltat) return deltat
def move(self, pathMSNew, overwrite=False, keepOrig=False): """ Move (or rename) the MS to another locus in the file system. """ logger.debug('Move: ' + self.pathMS + ' -> ' + pathMSNew) if overwrite == True: lib_util.check_rm(pathMSNew) if not os.path.exists(pathMSNew): if keepOrig: shutil.copytree(self.pathMS, pathMSNew) else: shutil.move(self.pathMS, pathMSNew) self.setPathVariables(pathMSNew)
def makeBeamReg(self, outfile, pb_cut=None, to_null=False): """ Create a ds9 region of the beam outfile : str output file pb_cut : float, optional diameter of the beam to_null : bool, optional arrive to the first null, not the FWHM """ logger.debug('Making PB region: ' + outfile) ra, dec = self.getPhaseCentre() if pb_cut is None: if 'OUTER' in self.getObsMode(): size = 8. / 2. elif 'SPARSE' in self.getObsMode(): size = 12. / 2. elif 'INNER' in self.getObsMode(): size = 16. / 2. else: logger.error( 'Cannot find beam size, only LBA_OUTER or LBA_SPARSE_* are implemented. Assuming beam diameter = 8 deg.' ) size = 8. / 2. else: size = pb_cut / 2. if to_null: size *= 1.7 # rough estimation s = Shape('circle', None) s.coord_format = 'fk5' s.coord_list = [ra, dec, size] # ra, dec, radius s.coord_format = 'fk5' s.attr = ([], { 'width': '2', 'point': 'cross', 'font': '"helvetica 16 normal roman"' }) s.comment = 'color=red text="beam"' regions = pyregion.ShapeList([s]) lib_util.check_rm(outfile) regions.write(outfile)
def blank_image_reg(filename, region, outfile = None, inverse = False, blankval = 0., op = "AND"): """ Set to "blankval" all the pixels inside the given region if inverse=True, set to "blankval" pixels outside region. If a list of region is provided the operation is applied to each region one after the other filename: fits file region: ds9 region or list of regions outfile: output name inverse: reverse final *combined* mask blankval: pixel value to set op: how to combine multiple regions with AND or OR """ if outfile == None: outfile = filename if not type(region) is list: region=[region] # open fits with pyfits.open(filename) as fits: origshape = fits[0].data.shape header, data = flatten(fits) sum_before = np.sum(data) if (op == 'AND'): total_mask = np.ones(shape = data.shape).astype(bool) if (op == 'OR'): total_mask = np.zeros(shape = data.shape).astype(bool) for this_region in region: # extract mask r = pyregion.open(this_region) mask = r.get_mask(header=header, shape=data.shape) if (op == 'AND'): total_mask = total_mask & mask if (op == 'OR'): total_mask = total_mask | mask if (inverse): total_mask = ~total_mask data[total_mask] = blankval # save fits fits[0].data = data.reshape(origshape) fits.writeto(outfile, overwrite=True) logger.debug("%s: Blanking (%s): sum of values: %f -> %f" % (filename, region, sum_before, np.sum(data)))
def run_losoto(s, c, h5s, parsets): """ s : scheduler c : cycle name, e.g. "final" h5s : lists of H5parm files parsets : lists of parsets to execute """ logger.info("Running LoSoTo...") # concat if len(h5s) > 1: h5 = 'cal-' + c + '.h5' check_rm("cal-" + c + ".h5") s.add('H5parm_collector.py -V -s sol000 -o ' + h5 + ' ' + ' '.join(h5s), log='losoto-' + c + '.log', commandType="python", processors='max') s.run(check=True) else: h5 = h5s[0] check_rm('plots') os.makedirs('plots') for parset in parsets: logger.debug('-- executing ' + parset + '...') s.add('losoto -V ' + h5 + ' ' + parset, log='losoto-' + c + '.log', logAppend=True, commandType="python", processors='max') s.run(check=True) check_rm('plots-' + c) os.system('mv plots plots-' + c)
def columnAddSimilar(pathMS, columnNameNew, columnNameSimilar, dataManagerInfoNameNew, overwrite=False, fillWithOnes=True, comment="", verbose=False): # more to lib_ms """ Add a column to a MS that is similar to a pre-existing column (in shape, but not in values). pathMS: path of the MS columnNameNew: name of the column to be added columnNameSimilar: name of the column from which properties are copied (e.g. "DATA") dataManagerInfoNameNew: string value for the data manager info (DMI) keyword "NAME" (should be unique in the MS) overwrite: whether or not to overwrite column 'columnNameNew' if it already exists fillWithOnes: whether or not to fill the newly-made column with ones verbose: whether or not to produce abundant output """ t = tables.table(pathMS, readonly=False) if (columnExists(t, columnNameNew) and not overwrite): logger.warning( "Attempt to add column '" + columnNameNew + "' aborted, as it already exists and 'overwrite = False' in columnAddSimilar(...)." ) else: # Either the column does not exist yet, or it does but overwriting is allowed. # Remove column if necessary. if (columnExists(t, columnNameNew)): logger.info("Removing column '" + columnNameNew + "'...") t.removecols(columnNameNew) # Add column. columnDescription = t.getcoldesc(columnNameSimilar) dataManagerInfo = t.getdminfo(columnNameSimilar) if (verbose): logger.debug("columnDescription:") logger.debug(columnDescription) logger.debug("dataManagerInfo:") logger.debug(dataManagerInfo) columnDescription["comment"] = "" # What about adding something here like: #columnDescription["dataManagerGroup"] = ...? dataManagerInfo["NAME"] = dataManagerInfoNameNew if (verbose): logger.debug("columnDescription (updated):") logger.debug(columnDescription) logger.debug("dataManagerInfo (updated):") logger.debug(dataManagerInfo) logger.info("Adding column '" + columnNameNew + "'...") t.addcols(tables.makecoldesc(columnNameNew, columnDescription), dataManagerInfo) # Fill with ones if desired. if (fillWithOnes): logger.info("Filling column '" + columnNameNew + "' with ones...") columnDataSimilar = t.getcol(columnNameSimilar) t.putcol(columnNameNew, np.ones_like(columnDataSimilar)) # Close the table to avoid that it is locked for further use. t.close()
def make_voronoi_reg(directions, fitsfile, outdir_reg='regions', out_mask='facet.fits', beam_reg=None, png=None): """ Take a list of coordinates and an image and voronoi tesselate the sky. It saves ds9 regions + fits mask of the facets directions : dict with {'Dir_0':[ra,dec], 'Dir_1':[ra,dec]...} - note that the "Dir_##" naming is important firsfile : mask fits file to tassellate (used for coordinates and to avoid splitting islands) outdir* : dir where to save regions/masks beam_reg : a ds9 region showing the the primary beam, exclude directions outside it """ def closest_node(node, nodes): """ Return closest values to node from nodes """ nodes = np.asarray(nodes) dist_2 = np.sum((nodes - node)**2, axis=1) return np.argmin(dist_2) import lib_img logger.debug("Image used for tasselation reference: " + fitsfile) fits = pyfits.open(fitsfile) hdr, data = lib_img.flatten(fits) w = pywcs.WCS(hdr) pixsize = np.abs(hdr['CDELT1']) # Get facets central pixels ras = np.array([directions[d][0].degree for d in directions]) decs = np.array([directions[d][1].degree for d in directions]) x_fs, y_fs = w.all_world2pix(ras, decs, 0, ra_dec_order=True) # keep trak of numbers in the direction names to name correctly patches in the fits files # in this way Dir_12 will have "12" into the fits for that patch. nums = [int(d.split('_')[1]) for d in directions.keys()] x_c = data.shape[0] / 2. y_c = data.shape[1] / 2. if beam_reg is None: # no beam, use all directions for facets idx_for_facet = range(len(directions)) else: r = pyregion.open(beam_reg) beam_mask = r.get_mask(header=hdr, shape=data.shape) beamradius_pix = r[0].coord_list[2] / pixsize idx_for_facet = [] for i, dd in enumerate(t): if beam_mask[t['x'][i], t['y'][i]] == True: idx_for_facet.append(i) # convert to pixel space (voronoi must be in eucledian space) x1 = 0 y1 = 0 x2 = data.shape[0] y2 = data.shape[1] # do tasselization vor = Voronoi( np.array((x_fs[idx_for_facet], y_fs[idx_for_facet])).transpose()) box = np.array([[x1, y1], [x2, y2]]) impoly = voronoi_finite_polygons_2d_box(vor, box) # create fits mask (each region one number) x, y = np.meshgrid(np.arange(x2), np.arange(y2)) # make a canvas with coordinates x, y = x.flatten(), y.flatten() pixels = np.vstack((x, y)).T data_facet = np.zeros(shape=data.shape) for num, poly in zip(nums, impoly): p = Path(poly) pixels_region = p.contains_points(pixels) # iterate through direction centres and find which one belongs to this region, then use the dir name to set the number # this is important as the vornoi tassellation has to have the same names of the original tassellation #for x,y,d in zip(x_fs, y_fs, directions.keys()): # if pixels_region.reshape(x2,y2)[int(np.rint(x)),int(np.rint(y))] == True: # num = int(d.split('_')[1]) # print num,x,y,d data_facet[pixels_region.reshape(x2, y2)] = num # put all values in each island equal to the closest region struct = generate_binary_structure(2, 2) data = binary_dilation(data, structure=struct, iterations=3).astype(data.dtype) # expand masks blobs, number_of_blobs = label(data.astype(int).squeeze(), structure=[[1, 1, 1], [1, 1, 1], [1, 1, 1]]) center_of_masses = center_of_mass(data, blobs, range(number_of_blobs + 1)) for blob in xrange(1, number_of_blobs + 1): # get closer facet facet_num = closest_node(center_of_masses[blob], np.array([y_fs, x_fs]).T) # put all pixel of that mask to that facet value data_facet[blobs == blob] = nums[facet_num] # save fits mask pyfits.writeto(out_mask, data_facet, hdr, overwrite=True) # save regions all_s = [] for i, poly in enumerate(impoly): ra, dec = w.all_pix2world(poly[:, 0], poly[:, 1], 0, ra_dec_order=True) coords = np.array([ra, dec]).T.flatten() s = Shape('Polygon', None) s.coord_format = 'fk5' s.coord_list = coords # ra, dec, radius s.coord_format = 'fk5' s.attr = ([], { 'width': '2', 'point': 'cross', 'font': '"helvetica 16 normal roman"' }) s.comment = 'color=red' all_s.append(s) regions = pyregion.ShapeList([s]) regionfile = outdir_reg + '/' + directions.keys()[ idx_for_facet[i]] + '.reg' regions.write(regionfile) # add names for all.reg for d_name, d_coord in directions.iteritems(): s = Shape('circle', None) s.coord_format = 'fk5' s.coord_list = [d_coord[0].degree, d_coord[1].degree, 0.01] # ra, dec, radius s.coord_format = 'fk5' s.attr = ([], { 'width': '1', 'point': 'cross', 'font': '"helvetica 16 normal roman"' }) s.comment = 'color=white text="%s"' % d_name all_s.append(s) regions = pyregion.ShapeList(all_s) regionfile = outdir_reg + '/all.reg' regions.write(regionfile) logger.debug( 'There are %i regions within the PB and %i outside (no facet).' % (len(idx_for_facet), len(directions) - len(idx_for_facet))) # plot tesselization if png is not None: import matplotlib.pyplot as pl pl.figure(figsize=(8, 8)) ax1 = pl.gca() voronoi_plot_2d(vor, ax1, show_vertices=True, line_colors='black', line_width=2, point_size=4) for i, d in enumerate(directions): ax1.text(x_fs[i], y_fs[i], d, fontsize=15) if not beam_reg is None: c1 = pl.Circle((x_c, y_c), beamradius_pix, color='g', fill=False) ax1.add_artist(c1) ax1.plot([x1, x1, x2, x2, x1], [y1, y2, y2, y1, y1]) ax1.set_xlabel('RA (pixel)') ax1.set_ylabel('Dec (pixel)') ax1.set_xlim(x1, x2) ax1.set_ylim(y1, y2) logger.debug('Save plot: %s' % png) pl.savefig(png)