def combine(bats_file, event_sum_file):
    """Combines the given BATS .dpr file with the Summary event.log file so
       that the DataFile contains most of the information from both.
    """
    # It is pretty much given that the data is CTD.

    lat, lng = bats_file.globals['LATITUDE'], bats_file.globals['LONGITUDE']

    # Find the event log record
    sum_file_i = None
    for i in range(len(event_sum_file)):
        sumlat, sumlng = event_sum_file['LATITUDE'][i], event_sum_file[
            'LONGITUDE'][i]
        epsilon = Decimal('1e-3')
        close_enough = equal_with_epsilon(lat, sumlat, epsilon) and \
                       equal_with_epsilon(lng, sumlng, epsilon)
        if close_enough:
            sum_file_i = i
            break

    if sum_file_i is None:
        log.error('Event for BATS data at %f %f not found' % (lat, lng))
        return
    headers = event_sum_file.column_headers()
    row = event_sum_file.row(i)

    info = dict(zip(headers, row))
    bats_file.globals['DEPTH'] = info['DEPTH']
示例#2
0
文件: volume.py 项目: cberys/libcchdo
def salinity_back_from_in_situ_density(temp, salty, press, stpned):
    '''Back calculate salinity using in situ density.
 
       Args:
           temp      in situ temperature.
           salty     a first guess at salinity.
           press     pressure in decibars.
           stpned    the sigma stp at the point in question
                       calculated as:
                       call sigma_r(p,p,t,s,stp)

       Return:
           sal       the resultant back calculated salinity.
    '''
    # Check for missing parameters.
    if _any_missing(temp, salty, stpned, press):
        return CDMISS

    plus = 0.04

    for i in range(1, 20):
        # Calculate STP at the guess salinity
        stpcal = sigma_r(press, press, temp, salty)
    
        # Add a little bit and calculate it again.
        salx = salty + plus
        stpx = sigma_r(press,press,temp,salx)
    
        # Figure the gradient.
        grad = plus / (stpx - stpcal)
    
        # Figure how much to add to the guessed salinity.
        saladd = grad * (stpned - stpcal)
        salnew = salty + saladd
    
        if abs(salnew) < 1000.0:
            # Guess isn't too ridiculous.
            if equal_with_epsilon(salnew, salty, TOLER):
                # succesive sal. approximations are very close. stop.
                return salnew
            else:
                salty = salnew
        else:
            print (' Numerical problem in salinity_back_from_in_situ_density. '
                   'Setting sal to missing.')
            return CDMISS

    if equal_with_epsilon(stpned, stpcal, TOLER):
        # resultant sigma is close enough.
        sal = (salty + salnew) / 2.0
        print ' averaging sal.=%f' % sal
        return sal
    else:
        return CDMISS
示例#3
0
文件: netcdf.py 项目: cberys/libcchdo
def simplest_str(s):
    """Give the simplest string representation.
       If a float is almost equivalent to an integer, swap out for the
       integer.
    """
    if type(s) is float:
        if fns.equal_with_epsilon(s, int(s)):
            s = int(s)
    return str(s)
示例#4
0
文件: volume.py 项目: cberys/libcchdo
def sigma_r(refprs, press, temp, salty):
    '''Calculate density using international equation of state

       From text furnished by J. Gieskes

       Args:
           press  -- pressure in decibars
           temp   -- temperature in celsius degrees
           salty  -- salinity PSS 78
           refprs -- reference pressure
                     refprs = 0. : sigma theta
                     refprs = press: sigma z

       Return:
           kg/m*3 - 1000.0
    '''

    # check for missing data
    if _any_missing(temp, press, salty):
        return CDMISS

    # calculate potential temperature
    if press != refprs:
        potemp = potential_temperature(press, temp, salty, refprs)
    else:
        potemp = temp

    # sigma theta kg/m**3
    sigma = (rho_w(potemp) + kw(potemp, salty) + k_st0(salty, potemp) + 
             _decimal(4.8314e-4) * salty ** 2)

    if equal_with_epsilon(refprs, 0.0):
        return sigma - _decimal(1000.0)

    # Calculate pressure effect
    #
    #   rho(s,t,0)/(1.0-p/k(s,t,p))
    #

    kst0 = secant_bulk_modulus(abs(salty), potemp, 0)

    # reference pressure in bars
    bars = refprs * 0.1

    # Calculate pressure terms
    terma = polynomial(potemp, (3.239908, 0.00143713, 1.16092e-4, -5.77905e-7)) + \
            polynomial(potemp, (0.0022838, -1.0981e-5, -1.6078e-6)) * salty + \
            1.91075e-4 * abs(salty) ** 1.5

    termb = polynomial(potemp, (8.50935e-5, -6.12293e-6, 5.2787e-8)) + \
            polynomial(potemp, (-9.9348e-7, 2.0816e-8, 9.1697e-10)) * salty

    # Secant bulk modulus k(s,t,p) */
    kstp = polynomial(bars, (kst0, terma, termb))

    return sigma / (1.0 - bars / kstp) - 1000.0
示例#5
0
def fp_eq(a, b):
    return equal_with_epsilon(a, b, 1e-5)
示例#6
0
文件: volume.py 项目: cberys/libcchdo
def salinity(press, potemp, sig):
    '''Calculate salinity using international equation of state and back 
       calculating the sigma theta portion of sigma_r().
 
       From text furnished by J. Gieskes
 
       Args:
           press  -- pressure in decibars
           potemp -- potential temperature in celsius degrees
           sig    -- kg/m*3 - 1000.0

       Return:
           sal    -- salinity PSS 78
    '''
    if _any_missing(press, sig, pt):
        return CDMISS

    # Calculate density at given salinity, temp and pressure=0.0
    # First approximation
    salty = 34.5
    rhow = rho_w(potemp)
    kw_ = kw(potemp, salty)

    for i in range(1, 20):
        # get derivative of kw with respect to salinity
        dkwdsl = kw_ / salty + 0.824493

        kst0 = k_st0(salty, potemp)

        # get derivative of kst0
        dkst0 = kst0 / abs(salty) ** 1.5 * 1.5 * sqrt(salty)

        # sigma theta kg/m**3
        sigma = rhow + kw_ + kst0 + 4.8314e-4 * salty ** 2

        # get derivative of sigma theta
        dsig0 = dkwdsl + dkst0 + 9.6628e-4 * salty

        # get next approximation to salinity
        sigma -= 1000.0
        f = sigma - sig
        dfdt = dsig0
        salnew = salty - f / dfdt

        if abs(salnew) < 2000.0:
            # guess isn't too ridiculous.
            if equal_with_epsilon(salnew, salty, TOLER):
                # succesive sal. approximations are very close. stop.
                return salnew
            else:
                salty = salnew
        else:
            print ' Numerical problem in salinity. Setting sal to missing.'
            return CDMISS

    if abs(f) < TOLER:
        # resultant sigma is close enough.
        sal = (salty + salnew) / 2.0
        print ' averaging sal.=%f' % sal
        return sal
    else:
        return CDMISS
示例#7
0
文件: volume.py 项目: cberys/libcchdo
def _missing(x):
    return equal_with_epsilon(x, CDMISS)
示例#8
0
文件: ecp.py 项目: cberys/libcchdo
def read(self, handle):
    """How to read CTD Bonus Goodhope files from a TAR."""
    lines = handle.readlines()

    line0 = lines[0].split()

    sect_id = line0[1]
    station = str(int(line0[0]))

    line3 = lines[3].split()
    lattoks = [line3[3], line3[4], line3[2]]
    lontoks = [line3[6], line3[7], line3[5]]
    try:
        latitude = ddm_to_dd(lattoks)
    except ValueError:
        latitude = ddm_to_dd([lattoks[1], lattoks[2], lattoks[0]])
    try:
        longitude = ddm_to_dd(lontoks)
    except ValueError:
        longitude = ddm_to_dd([lontoks[1], lontoks[2], lontoks[0]])
    date = line3[0]
    time = line3[1].zfill(4)
    depth = line3[10]

    self.globals['EXPOCODE'] = None
    self.globals['SECT_ID'] = sect_id
    self.globals['STNNBR'] = station
    self.globals['CASTNO'] = '1'
    self.globals['LATITUDE'] = latitude
    self.globals['LONGITUDE'] = longitude
    self.globals['DEPTH'] = depth
    self.globals['_DATETIME'] = datetime.strptime(date + time, '%d%m%Y%H%M')

    param_units = [
        ['CTDPRS', 'DBAR'],
        ['CTDTMP', 'ITS-90'],
        ['CTDSAL', 'PSS-78'],
        ['CTDOXY', 'UMOL/KG'],
        ['THETA', 'DEG C'],
        ['DEPTH', 'METERS'],
        ['SIG0', 'KG/M^3'],
        ['GAMMA', 'KG/M^3'],
    ]

    columns = []
    units = []
    for p, u in param_units:
        columns.append(p)
        units.append(u)

    self.create_columns(columns, units)

    data = lines[14:]
    for l in data:
        for i, v in enumerate(map(float, l.split())):
            v = _decimal(v)
            flag_woce = 2
            if equal_with_epsilon(v, 9.0):
                v = None
                flag_woce = 9
            self[columns[i]].append(v, flag_woce=flag_woce)

    self.check_and_replace_parameters()
示例#9
0
文件: tools.py 项目: cberys/libcchdo
def australian_navy_ctd(args):
    """Download and convert Australian Navy CTD data."""
    from pydap.client import open_url
    from libcchdo.thredds import crawl
    from libcchdo.formats.ctd.zip import exchange as ctdzipex
    from libcchdo.formats.zip import write as zwrite

    dfcs = []

    cf_param_to_cchdo_param = {
        'sea_water_pressure': 'CTDPRS',
        'sea_water_temperature': 'CTDTMP',
        'sea_water_practical_salinity': 'CTDSAL',
    }
    ignored_qc_flags = [
        'time_qc_flag',
        'position_qc_flag',
    ]
    qc_conventions = {
        'Proposed IODE qc scheme March 2012': {
            1: 2,  # good
            2: 5,  # not_evaluated_or_unknown
            3: 3,  # suspect
            4: 4,  # bad
            9: 9,  # missing
        },
    }

    dfc = DataFileCollection()
    catalog = "http://www.metoc.gov.au/thredds/catalog/RAN_CTD_DATA/catalog.xml"
    for url in crawl(catalog):
        df = DataFile()

        log.info(u'Reading %s', url)
        dset = open_url(url)
        vars = dset.keys()
        for vname in vars:
            var = dset[vname]
            attrs = var.attributes
            if 'standard_name' in attrs:
                std_name = attrs['standard_name']
                if std_name == 'time':
                    df.globals['_DATETIME'] = \
                        datetime(1950, 1, 1) + timedelta(var[:])
                elif std_name == 'latitude':
                    df.globals['LATITUDE'] = var[:]
                elif std_name == 'longitude':
                    df.globals['LONGITUDE'] = var[:]
                elif std_name in cf_param_to_cchdo_param:
                    cparam = cf_param_to_cchdo_param[std_name]
                    if '_FillValue' in attrs:
                        fill_value = attrs['_FillValue']
                        values = []
                        for x in var[:]:
                            if equal_with_epsilon(x, fill_value):
                                values.append(None)
                            else:
                                values.append(x)
                    else:
                        values = var[:]

                    try:
                        df[cparam].values = values
                    except KeyError:
                        df[cparam] = Column(cparam)
                        df[cparam].values = values
                elif 'status_flag' in std_name:
                    flagged_param = std_name.replace('status_flag', '').strip()
                    cparam = cf_param_to_cchdo_param[flagged_param]
                    qc_convention = attrs['quality_control_convention']
                    if qc_convention in qc_conventions:
                        qc_map = qc_conventions[qc_convention]
                        df[cparam].flags_woce = [qc_map[x] for x in var[:]]
                else:
                    log.debug('unhandled standard_name %s', std_name)
            elif ('long_name' in attrs
                  and attrs['long_name'] == 'profile identifier'):
                profile_id = var[:]
                cruise_id = profile_id / 10**4
                profile_id = profile_id - cruise_id * 10**4
                df.globals['EXPOCODE'] = str(cruise_id)
                df.globals['STNNBR'] = str(profile_id)
                df.globals['CASTNO'] = str(1)
            elif vname in ignored_qc_flags:
                df.globals['_' + vname] = var[:]
            elif (vname.endswith('whole_profile_flag')
                  or vname.endswith('sd_test')):
                pass
            else:
                log.debug('unhandled variable %s', vname)

        # attach new file to appropriate collection
        if dfc.files:
            if dfc.files[0].globals['EXPOCODE'] != df.globals['EXPOCODE']:
                dfcs.append(dfc)
                dfc = DataFileCollection()
        dfc.append(df)

    with closing(args.output) as out_file:
        next_id = 0

        def get_filename(dfc):
            try:
                return '{0}_ct1.zip'.format(dfc.files[0].globals['EXPOCODE'])
            except IndexError:
                next_id += 1
                return '{0}_ct1.zip'.format(next_id)

        zwrite(dfcs, out_file, ctdzipex, get_filename)
示例#10
0
 def test_equal_with_epsilon(self):
     self.assertTrue(fns.equal_with_epsilon(1, 1 + 1e-7))
     self.assertFalse(fns.equal_with_epsilon(1, 1 + 1e-5))
     self.assertFalse(fns.equal_with_epsilon(1, 1 + 1e-7, 1e-7))
     self.assertTrue(fns.equal_with_epsilon(1, 1 + 1e-7, 1e-6))
示例#11
0
def _decimal_check_missing(str):
    """Convert str to a decimal or None if matches dpr fill value."""
    x = _decimal(str)
    if equal_with_epsilon(x, -9.99) or equal_with_epsilon(x, -10):
        return None
    return x
def read(self, handle, metadata=None):
    """How to read a Bottle Bermuda Atlantic Time-Series Study file.

    This function reads bats_bottle.txt.

    Arguments:
    self - (special case, see NOTE) dictionary
    metadata - (optional) BATS cruise metadata to be used to find port dates

    NOTE: The result for this method is a special case. The bottle file format
    contains the entire BATS holdings while the internal data format splits data
    up by cruises. Because cruises for timeseries are split by file for cruise,
    the end result is a dictionary with cruise_ids as keys to
    DatafileCollections (cruises) containing Datafiles (casts). 

    """
    sections = _read_header_sections(self, handle)
    _read_variables(self, handle)
    parameters = _get_variables(self, handle, sections)

    # Add DON for note in Variables list stating DON is reported for TON prior
    # to BATS 121
    parameters.append(['DON', None, 'umol/kg'])

    manual_parameters = [
        ['BTLNBR', ''],
        ['_DATETIME', ''],
        ['LATITUDE', ''],
        ['LONGITUDE', ''],
        ['_ACTUAL_DEPTH', 'METERS'],
    ]
    columns = [x[0] for x in manual_parameters]
    units = [x[1] for x in manual_parameters]

    s = None
    for i, (var, d, u) in enumerate(parameters):
        if var == 'Depth':
            s = i + 1
            continue
        # Only want to add parameters after Depth. The others were done manually.
        if s is None:
            continue
        try:
            var = bats_to_param[var]
        except KeyError:
            pass
        columns.append(var)
        units.append(u)

    template_df = DataFile()
    template_df.create_columns(columns, units)
    template_df.check_and_replace_parameters(convert=False)

    for sec, lines in sections.items():
        if sec == 'Variables list':
            continue
        if sec != 'Comments':
            continue
        template_df.globals['_{0}'.format(sec)] = '\n'.join(lines)

    df = None
    params_auto = parameters[s:]
    dfi = 0
    for i, l in enumerate(handle):
        parts = l.split()

        id = parts[0]
        (cruise_type, type_id, cruise_num, cruise_id, cast_type, cast_id,
         nisk_id) = _parse_bats_id(id)
        ship = _ship_from_cruise_num(cruise_num)
        if not ship:
            ship = 'R/V Atlantic Explorer'

        if (df is None or df.globals['_OS_ID'] != cruise_id
                or df.globals['STNNBR'] != cruise_type
                or df.globals['CASTNO'] != cast_id):
            if df is not None:
                # Done reading one cast. Finalize it.
                log.info(u'finalizing cast {0} {1} {2}'.format(
                    df.globals['_OS_ID'], df.globals['STNNBR'],
                    df.globals['CASTNO']))
                try:
                    meta = metadata[cruise_id]
                    port_date = meta['dates'][0]
                except (TypeError, KeyError):
                    port_date = None
                if not port_date:
                    port_date = min(df['_DATETIME'])
                df.globals['EXPOCODE'] = create_expocode(
                    ship_code(ship, raise_on_unknown=False), port_date)
                log.info(df.globals['EXPOCODE'])
                df.globals['DEPTH'] = max(df['_ACTUAL_DEPTH'])
                collapse_globals(df, ['_DATETIME', 'LATITUDE', 'LONGITUDE'])
                # Normalize all the parameter column lengths. There may be
                # columns that did not get data written to them so make sure
                # they are just as long as the rest
                length = len(df)
                for c in df.columns.values():
                    c.set_length(length)
                try:
                    dfc = self[df.globals['_OS_ID']]
                except KeyError:
                    dfc = self[df.globals['_OS_ID']] = DataFileCollection()
                dfc.files.append(df)
                dfi = 0

            # Create a new cast
            df = copy(template_df)
            df.globals['SECT_ID'] = BATS_SECT_ID
            df.globals['_SHIP'] = ship
            df.globals['_OS_ID'] = cruise_id
            df.globals['STNNBR'] = cruise_type
            df.globals['CASTNO'] = cast_id

        df['BTLNBR'].set(dfi, nisk_id)

        dt_ascii = datetime.strptime(parts[1] + parts[3], '%Y%m%d%H%M')
        dt_deci = bats_time_to_dt(parts[2])
        #if dt_ascii != dt_deci:
        #    log.warn(
        #        u'Dates differ on data row {0}: {5} {1!r}={2} '
        #        '{3!r}={4}'.format(i, parts[1] + parts[3], dt_ascii, parts[2],
        #                           dt_deci, dt_deci - dt_ascii))
        df['_DATETIME'].set(dfi, dt_ascii)

        df['LATITUDE'].set(dfi, Decimal(parts[4]))
        df['LONGITUDE'].set(dfi, Decimal(correct_longitude(parts[5])))
        df['_ACTUAL_DEPTH'].set_check_range(dfi, Decimal(parts[6]))

        parts_auto = parts[s:]
        for p, v in zip(params_auto, parts_auto):
            param = p[0]
            try:
                param = bats_to_param[param]
            except KeyError:
                pass
            if cruise_num < 121 and param == 'TON':
                param = 'DON'

            if (equal_with_epsilon(v, -9) or equal_with_epsilon(v, -9.9)
                    or equal_with_epsilon(v, -9.99)):
                df[param].set_check_range(dfi, None)
            # TODO determine whether -10 is just bad formatting for -9.9
            elif equal_with_epsilon(v, -10):
                #log.warn(u'Possible missing data value {0}'.format(v))
                df[param].set_check_range(dfi, None)
            elif v == 0:
                log.warn(u'Data under detection limit, set flag to '
                         'WOCE water sample questionable measurement')
                df[param].set_check_range(dfi, None, flag=3)
            else:
                df[param].set_check_range(dfi, Decimal(v))

        dfi += 1
        # Since this is a super long file that contains multiple cruises and
        # casts, as the file is processed it is split apart into a list of
        # DataFileCollection(s) containing DataFile objects for each casts
        if i % 100 == 0:
            log.info(u'processed {0} lines'.format(i))