示例#1
0
    def __init__(self, graphfile):
        select = 1
        self.detector = YoloDetector(select)
        mvnc.SetGlobalOption(mvnc.GlobalOption.LOG_LEVEL, 2)
        devices = mvnc.EnumerateDevices()
        if len(devices) == 0:
            print('No MVNC devices found')
            quit()
        self.device = mvnc.Device(devices[0])
        self.device.OpenDevice()
        opt = self.device.GetDeviceOption(mvnc.DeviceOption.OPTIMISATION_LIST)
        # load blob
        with open(graphfile, mode='rb') as f:
            blob = f.read()
        self.graph = self.device.AllocateGraph(blob)
        self.graph.SetGraphOption(mvnc.GraphOption.ITERATIONS, 1)
        iterations = self.graph.GetGraphOption(mvnc.GraphOption.ITERATIONS)

        self.dim = (416, 416)
        self.blockwd = 12
        self.wh = self.blockwd * self.blockwd
        self.targetBlockwd = 12
        self.classes = 20
        self.threshold = 0.2
        self.nms = 0.4
示例#2
0
    def __init__(self, graphfile):
        select = 1
        self.detector = YoloDetector(select)

        for i in range(ObjectWrapper.devNum):
            ObjectWrapper.devHandle.append(
                mvnc.Device(ObjectWrapper.devices[i]))
            ObjectWrapper.devHandle[i].OpenDevice()
            opt = ObjectWrapper.devHandle[i].GetDeviceOption(
                mvnc.DeviceOption.OPTIMISATION_LIST)
            # load blob
            with open(graphfile, mode='rb') as f:
                blob = f.read()
            ObjectWrapper.graphHandle.append(
                ObjectWrapper.devHandle[i].AllocateGraph(blob))
            ObjectWrapper.graphHandle[i].SetGraphOption(
                mvnc.GraphOption.ITERATIONS, 1)
            iterations = ObjectWrapper.graphHandle[i].GetGraphOption(
                mvnc.GraphOption.ITERATIONS)

            self.dim = (416, 416)
            self.blockwd = 12
            self.wh = self.blockwd * self.blockwd
            self.targetBlockwd = 13
            self.classes = 20
            self.threshold = 0.2
            self.nms = 0.4
示例#3
0
    def __init__(self, graphfile):
        select = 1
        self.detector = YoloDetector(select)
        for i in range(ObjectWrapper.devNum):
            ObjectWrapper.devHandle.append(
                mvnc.Device(ObjectWrapper.devices[i]))  ##------get devices
            ObjectWrapper.devHandle[i].open()  ##------ open device_i
            # load blob
            with open(graphfile, mode='rb') as f:
                blob = f.read()
            # create graph instance
            ObjectWrapper.graphHandle.append(mvnc.Graph('inst' + str(i)))
            # allocate resources
            fifoIn, fifoOut = ObjectWrapper.graphHandle[i].allocate_with_fifos(
                ObjectWrapper.devHandle[i], blob)
            ObjectWrapper.fifoInHandle.append(fifoIn)
            ObjectWrapper.fifoOutHandle.append(fifoOut)

        if (graphfile.endswith('416')):
            self.dim = (416, 416)
        elif (graphfile.endswith('288')):
            self.dim = (288, 288)
        elif (graphfile.endswith('352')):
            self.dim = (352, 352)
        else:
            self.dim = (416, 416)

        self.blockwd = int(self.dim[0] / 32)
        self.wh = self.blockwd * self.blockwd
        self.targetBlockwd = int(self.dim[0] / 32)
        self.classes = 6
        self.threshold = 0.35
        self.nms = 0.45
示例#4
0
    def __init__(self, graphfile):
        select = 1
        self.detector = YoloDetector(select)
        for i in range(ObjectWrapper.devNum):
            ObjectWrapper.devHandle.append(
                mvnc.Device(ObjectWrapper.devices[i]))
            ObjectWrapper.devHandle[i].open()
            # load blob
            with open(graphfile, mode='rb') as f:
                blob = f.read()
            # create graph instance
            ObjectWrapper.graphHandle.append(mvnc.Graph('inst' + str(i)))
            # allocate resources
            fifoIn, fifoOut = ObjectWrapper.graphHandle[i].allocate_with_fifos(
                ObjectWrapper.devHandle[i], blob)
            ObjectWrapper.fifoInHandle.append(fifoIn)
            ObjectWrapper.fifoOutHandle.append(fifoOut)

        self.dim = (416, 416)
        self.blockwd = 12
        self.wh = self.blockwd * self.blockwd
        self.targetBlockwd = 13
        self.classes = 20
        self.threshold = 0.2
        self.nms = 0.4
示例#5
0
    def __init__(self, graphfile):
        select = 1
        self.detector = YoloDetector(select)

        for i in range(
                ObjectWrapper.devNum):  # will loop for each device detected
            ObjectWrapper.devHandle.append(
                mvnc.Device(ObjectWrapper.devices[i])
            )  # pass in list of devices, append that device to device list.
            ObjectWrapper.devHandle[i].open()  # open that device.
            #opt = ObjectWrapper.devHandle[i].GetDeviceOption(mvnc.DeviceOption.OPTIMISATION_LIST)
            # load blob
            with open(graphfile, mode='rb') as f:
                blob = f.read()
            graph = mvnc.Graph('graph1')  # creates a graph instance

            # Allocate the graph and store to array
            #ObjectWrapper.graphHandle.append(graph.allocate(ObjectWrapper.devHandle[i], blob))
            input_fifo, output_fifo = graph.allocate_with_fifos(
                ObjectWrapper.devHandle[i], blob)

            ObjectWrapper.graphHandle.append(graph)
            ObjectWrapper.inputHandle.append(input_fifo)
            ObjectWrapper.outputHandle.append(output_fifo)

            self.dim = (416, 416)
            self.blockwd = 12
            self.wh = self.blockwd * self.blockwd
            self.targetBlockwd = 13
            self.classes = 1
            self.threshold = 0.2
            self.nms = 0.4
示例#6
0
 def __init__(self, annpythonlib, weightsfile):
     select = 1
     self.detector = YoloDetector(select)
     self.api = AnnAPI(annpythonlib)
     input_info,output_info = self.api.annQueryInference().decode("utf-8").split(';')
     input,name,ni,ci,hi,wi = input_info.split(',')
     self.hdl = self.api.annCreateInference(weightsfile.encode('utf-8'))
     self.dim = (int(hi),int(wi))
     self.blockwd = 12
     self.wh = self.blockwd*self.blockwd
     self.targetBlockwd = 13
     self.classes = 20
     self.threshold = 0.18
     self.nms = 0.4
示例#7
0
def createYoloDetector(numClasses, anchors):
    # parse cfg file to find dimensions, #classes etc.
    #classes = cfgGetVal(cfgfile, "region", "classes")
    #biases = cfgGetVal(cfgfile, "region", "anchors")
    c = (numClasses + 5) * 5

    return YoloDetector(1, c, BLOCK_WD, BLOCK_WD, numClasses, NMS,
                        TARGET_BLOCK_WD, anchors)
示例#8
0
class ObjectWrapper():
    def __init__(self, graphfile):
        select = 1
        self.detector = YoloDetector(select)
        mvnc.SetGlobalOption(mvnc.GlobalOption.LOG_LEVEL, 2)
        devices = mvnc.EnumerateDevices()
        if len(devices) == 0:
            print('No MVNC devices found')
            quit()
        self.device = mvnc.Device(devices[0])
        self.device.OpenDevice()
        opt = self.device.GetDeviceOption(mvnc.DeviceOption.OPTIMISATION_LIST)
        # load blob
        with open(graphfile, mode='rb') as f:
            blob = f.read()
        self.graph = self.device.AllocateGraph(blob)
        self.graph.SetGraphOption(mvnc.GraphOption.ITERATIONS, 1)
        iterations = self.graph.GetGraphOption(mvnc.GraphOption.ITERATIONS)

        self.dim = (416, 416)
        self.blockwd = 12
        self.wh = self.blockwd * self.blockwd
        self.targetBlockwd = 12
        self.classes = 20
        self.threshold = 0.2
        self.nms = 0.4

    def __del__(self):
        self.graph.DeallocateGraph()
        self.device.CloseDevice()

    def PrepareImage(self, img, dim):
        imgw = img.shape[1]
        imgh = img.shape[0]
        imgb = np.empty((dim[0], dim[1], 3))
        imgb.fill(0.5)

        if imgh / imgw > dim[1] / dim[0]:
            neww = int(imgw * dim[1] / imgh)
            newh = dim[1]
        else:
            newh = int(imgh * dim[0] / imgw)
            neww = dim[0]
        offx = int((dim[0] - neww) / 2)
        offy = int((dim[1] - newh) / 2)

        imgb[offy:offy + newh,
             offx:offx + neww, :] = resize(img.copy() / 255.0, (newh, neww), 1)
        im = imgb[:, :, (2, 1, 0)]
        return im, offx, offy

    def Reshape(self, out, dim):
        shape = out.shape
        out = np.transpose(out.reshape(self.wh, int(shape[0] / self.wh)))
        out = out.reshape(shape)
        return out

    def Detect(self, img):
        imgw = img.shape[1]
        imgh = img.shape[0]

        im, offx, offy = self.PrepareImage(img, self.dim)
        self.graph.LoadTensor(im.astype(np.float16), 'user object')
        out, userobj = self.graph.GetResult()
        out = self.Reshape(out, self.dim)

        internalresults = self.detector.Detect(out.astype(np.float32),
                                               int(out.shape[0] / self.wh),
                                               self.blockwd, self.blockwd,
                                               self.classes, imgw, imgh,
                                               self.threshold, self.nms,
                                               self.targetBlockwd)
        pyresults = [BBox(x) for x in internalresults]
        return pyresults
示例#9
0
#cam = cv2.VideoCapture('/home/pi/TinyYolo/detectionExample/xxxx.mp4')

if cam.isOpened() != True:
    print("Camera/Movie Open Error!!!")
    quit()

widowWidth = 320
windowHeight = 240
cam.set(cv2.CAP_PROP_FRAME_WIDTH, widowWidth)
cam.set(cv2.CAP_PROP_FRAME_HEIGHT, windowHeight)

lock = Lock()
frameBuffer = []
results = Queue()
lastresults = None
detector = YoloDetector(1)


def init():
    glClearColor(0.7, 0.7, 0.7, 0.7)


def idle():
    glutPostRedisplay()


def resizeview(w, h):
    glViewport(0, 0, w, h)
    glLoadIdentity()
    glOrtho(-w / 1920, w / 1920, -h / 1080, h / 1080, -1.0, 1.0)
示例#10
0
class ObjectWrapper():
    mvnc.SetGlobalOption(mvnc.GlobalOption.LOG_LEVEL, 2)
    devices = mvnc.EnumerateDevices()
    devNum = len(devices)
    if len(devices) == 0:
        print('No MVNC devices found')
        quit()
    devHandle = []
    graphHandle = []

    def __init__(self, graphfile):
        select = 1
        self.detector = YoloDetector(select)

        for i in range(ObjectWrapper.devNum):
            ObjectWrapper.devHandle.append(
                mvnc.Device(ObjectWrapper.devices[i]))
            ObjectWrapper.devHandle[i].OpenDevice()
            opt = ObjectWrapper.devHandle[i].GetDeviceOption(
                mvnc.DeviceOption.OPTIMISATION_LIST)
            # load blob
            with open(graphfile, mode='rb') as f:
                blob = f.read()
            ObjectWrapper.graphHandle.append(
                ObjectWrapper.devHandle[i].AllocateGraph(blob))
            ObjectWrapper.graphHandle[i].SetGraphOption(
                mvnc.GraphOption.ITERATIONS, 1)
            iterations = ObjectWrapper.graphHandle[i].GetGraphOption(
                mvnc.GraphOption.ITERATIONS)

            self.dim = (416, 416)
            self.blockwd = 12
            self.wh = self.blockwd * self.blockwd
            self.targetBlockwd = 13
            self.classes = 20
            self.threshold = 0.2
            self.nms = 0.4

    def __del__(self):
        for i in range(ObjectWrapper.devNum):
            ObjectWrapper.graphHandle[i].DeallocateGraph()
            ObjectWrapper.devHandle[i].CloseDevice()

    def PrepareImage(self, img, dim):
        imgw = img.shape[1]
        imgh = img.shape[0]
        imgb = np.empty((dim[0], dim[1], 3))
        imgb.fill(0.5)

        if imgh / imgw > dim[1] / dim[0]:
            neww = int(imgw * dim[1] / imgh)
            newh = dim[1]
        else:
            newh = int(imgh * dim[0] / imgw)
            neww = dim[0]
        offx = int((dim[0] - neww) / 2)
        offy = int((dim[1] - newh) / 2)

        imgb[offy:offy + newh,
             offx:offx + neww, :] = resize(img.copy() / 255.0, (newh, neww), 1)
        im = imgb[:, :, (2, 1, 0)]
        return im, offx, offy, (imgw - offx * 2 +
                                .0) / imgw, (imgh - offy * 2 + .0) / imgh

    def Reshape(self, out, dim):
        shape = out.shape
        out = np.transpose(out.reshape(self.wh, int(shape[0] / self.wh)))
        out = out.reshape(shape)
        return out

    def Detect(self, img):
        imgw = img.shape[1]
        imgh = img.shape[0]

        im, offx, offy, xscale, yscale = self.PrepareImage(img, self.dim)
        #print('xscale = {}, yscale = {}'.format(xscale, yscale))
        ObjectWrapper.graphHandle[0].LoadTensor(im.astype(np.float16),
                                                'user object')
        out, userobj = ObjectWrapper.graphHandle[0].GetResult()
        out = self.Reshape(out, self.dim)

        internalresults = self.detector.Detect(out.astype(np.float32),
                                               int(out.shape[0] / self.wh),
                                               self.blockwd, self.blockwd,
                                               self.classes, imgw, imgh,
                                               self.threshold, self.nms,
                                               self.targetBlockwd)
        pyresults = [
            BBox(x, xscale, yscale, offx, offy) for x in internalresults
        ]
        return pyresults

    def Parallel(self, img):
        pyresults = {}
        for i in range(ObjectWrapper.devNum):
            im, offx, offy, w, h = self.PrepareImage(img[i], self.dim)
            ObjectWrapper.graphHandle[i].LoadTensor(im.astype(np.float16),
                                                    'user object')
        for i in range(ObjectWrapper.devNum):
            out, userobj = ObjectWrapper.graphHandle[i].GetResult()
            out = self.Reshape(out, self.dim)
            imgw = img[i].shape[1]
            imgh = img[i].shape[0]
            internalresults = self.detector.Detect(out.astype(np.float32),
                                                   int(out.shape[0] / self.wh),
                                                   self.blockwd, self.blockwd,
                                                   self.classes, imgw, imgh,
                                                   self.threshold, self.nms,
                                                   self.targetBlockwd)
            res = [BBox(x, w, h, offx, offy) for x in internalresults]
            if i not in pyresults:
                pyresults[i] = res
        return pyresults
示例#11
0
class AnnieObjectWrapper():
    def __init__(self, annpythonlib, weightsfile):
        select = 1
        self.detector = YoloDetector(select)
        self.api = AnnAPI(annpythonlib)
        input_info, output_info = self.api.annQueryInference().decode(
            "utf-8").split(';')
        input, name, ni, ci, hi, wi = input_info.split(',')
        self.hdl = self.api.annCreateInference(weightsfile.encode('utf-8'))
        self.dim = (int(hi), int(wi))
        self.blockwd = 12
        self.wh = self.blockwd * self.blockwd
        self.targetBlockwd = 13
        self.classes = 20
        self.threshold = 0.18
        self.nms = 0.4

    def __del__(self):
        self.api.annReleaseInference(self.hdl)

    def PrepareImage(self, img, dim):
        imgw = img.shape[1]
        imgh = img.shape[0]
        imgb = np.empty((dim[0], dim[1], 3))
        imgb.fill(0.5)

        if imgh / imgw > dim[1] / dim[0]:
            neww = int(imgw * dim[1] / imgh)
            newh = dim[1]
        else:
            newh = int(imgh * dim[0] / imgw)
            neww = dim[0]
        offx = int((dim[0] - neww) / 2)
        offy = int((dim[1] - newh) / 2)

        imgb[offy:offy + newh,
             offx:offx + neww, :] = resize(img.copy() / 255.0, (newh, neww), 1)
        #print('INFO:: newW:%d newH:%d offx:%d offy: %d elem0:%.5f elem1:%.5f elem2:%.5f' % (neww, newh, offx, offy, imgb[offy,offx+1,0], imgb[offy,offx+1,1], imgb[offy,offx+1,2]))
        im = imgb[:, :, (2, 1, 0)]
        return im, int(offx * imgw / neww), int(
            offy * imgh / newh), neww / dim[0], newh / dim[1]

    def Reshape(self, out, dim):
        shape = out.shape
        out = np.transpose(out.reshape(self.wh, int(shape[0] / self.wh)))
        out = out.reshape(shape)
        return out

    def runInference(self, img, out):
        imgw = img.shape[1]
        imgh = img.shape[0]
        #convert image to tensor format (RGB in seperate planes)
        img_r = img[:, :, 0]
        img_g = img[:, :, 1]
        img_b = img[:, :, 2]
        img_t = np.concatenate((img_r, img_g, img_b), 0)
        status = self.api.annCopyToInferenceInput(
            self.hdl, np.ascontiguousarray(img_t, dtype=np.float32),
            (img.shape[0] * img.shape[1] * 3 * 4), 0)
        #print('INFO: annCopyToInferenceInput status %d'  %(status))
        status = self.api.annRunInference(self.hdl, 1)
        #print('INFO: annRunInference status %d ' %(status))
        status = self.api.annCopyFromInferenceOutput(
            self.hdl, np.ascontiguousarray(out, dtype=np.float32), out.nbytes)
        #print('INFO: annCopyFromInferenceOutput status %d' %(status))
        return out

    def Detect(self, img):
        imgw = img.shape[1]
        imgh = img.shape[0]
        im, offx, offy, xscale, yscale = self.PrepareImage(img, self.dim)
        out_buf = bytearray(12 * 12 * 125 * 4)
        out = np.frombuffer(out_buf, dtype=numpy.float32)
        output = self.runInference(im, out)
        internalresults = self.detector.Detect(output.astype(np.float32),
                                               int(output.shape[0] / self.wh),
                                               self.blockwd, self.blockwd,
                                               self.classes, imgw, imgh,
                                               self.threshold, self.nms,
                                               self.targetBlockwd)
        pyresults = [
            BBox(x, xscale, yscale, offx, offy) for x in internalresults
        ]
        return pyresults
示例#12
0
class ObjectWrapper():
    mvnc.global_set_option(mvnc.GlobalOption.RW_LOG_LEVEL, 2)
    devices = mvnc.enumerate_devices()
    devNum = len(devices)
    if len(devices) == 0:
        print('No MVNC devices found')
        quit()
    devHandle = []
    graphHandle = []
    fifoInHandle = []
    fifoOutHandle = []

    def __init__(self, graphfile):
        select = 1
        self.detector = YoloDetector(select)
        for i in range(ObjectWrapper.devNum):
            ObjectWrapper.devHandle.append(
                mvnc.Device(ObjectWrapper.devices[i]))  ##------get devices
            ObjectWrapper.devHandle[i].open()  ##------ open device_i
            # load blob
            with open(graphfile, mode='rb') as f:
                blob = f.read()
            # create graph instance
            ObjectWrapper.graphHandle.append(mvnc.Graph('inst' + str(i)))
            # allocate resources
            fifoIn, fifoOut = ObjectWrapper.graphHandle[i].allocate_with_fifos(
                ObjectWrapper.devHandle[i], blob)
            ObjectWrapper.fifoInHandle.append(fifoIn)
            ObjectWrapper.fifoOutHandle.append(fifoOut)

        if (graphfile.endswith('416')):
            self.dim = (416, 416)
        elif (graphfile.endswith('288')):
            self.dim = (288, 288)
        elif (graphfile.endswith('352')):
            self.dim = (352, 352)
        else:
            self.dim = (416, 416)

        self.blockwd = int(self.dim[0] / 32)
        self.wh = self.blockwd * self.blockwd
        self.targetBlockwd = int(self.dim[0] / 32)
        self.classes = 6
        self.threshold = 0.35
        self.nms = 0.45

    def __del__(self):
        for i in range(ObjectWrapper.devNum):
            ObjectWrapper.fifoInHandle[i].destroy()
            ObjectWrapper.fifoOutHandle[i].destroy()
            ObjectWrapper.graphHandle[i].destroy()
            ObjectWrapper.devHandle[i].close()

    def PrepareImage(self, img, dim):
        '''
        imgw = img.shape[1]
        imgh = img.shape[0]
        imgb = np.empty((dim[0], dim[1], 3))
        imgb.fill(0.5)

        if imgh/imgw > dim[1]/dim[0]:
            neww = int(imgw * dim[1] / imgh)
            newh = dim[1]
        else:
            newh = int(imgh * dim[0] / imgw)
            neww = dim[0]
        offx = int((dim[0] - neww)/2)
        offy = int((dim[1] - newh)/2)

        imgb[offy:offy+newh,offx:offx+neww,:] = resize(img.copy()/255.0,(newh,neww),1)
        im = imgb[:,:,(2,1,0)]
        '''

        imgw = img.shape[1]
        imgh = img.shape[0]
        imgb = np.empty((dim[0], dim[1], 3))
        imgb.fill(0.5)

        #neww = 416
        #newh = 416
        neww = dim[0]
        newh = dim[1]

        offx = int((dim[0] - neww) / 2)
        offy = int((dim[1] - newh) / 2)
        start_time = datetime.now()
        imgb[offy:offy + newh,
             offx:offx + neww, :] = resize(img.copy() / 255.0, (newh, neww), 1)
        #imgb[offy:offy+newh,offx:offx+neww,:] = resize(img/255.0,(newh,neww),1)
        #imgb[offy:offy+newh,offx:offx+neww,:] = cv2.resize(img/255.0, (newh, neww))
        print(datetime.now() - start_time)
        im = imgb[:, :, (2, 1, 0)]
        #im = imgb

        return im, int(offx * imgw / neww), int(
            offy * imgh / newh), neww / dim[0], newh / dim[1]

    def Reshape(self, out, dim):
        shape = out.shape
        out = np.transpose(out.reshape(self.wh, int(shape[0] / self.wh)))
        out = out.reshape(shape)
        return out

    def non_max_suppress(self, predicts_dict, threshold=0.3):
        """
        implement non-maximum supression on predict bounding boxes.
        Args:
            predicts_dict: {"stick": [[x1, y1, x2, y2, scores1], [...]]}.
            threshhold: iou threshold
        Return:
            predicts_dict processed by non-maximum suppression
        """
        for object_name, bbox in predicts_dict.items():  #对每一个类别的目标分别进行NMS
            #if(len(bbox)<2):
            #continue
            bbox_array = np.array(
                bbox, dtype=np.float
            )  ## 获取当前目标类别下所有矩形框(bounding box,下面简称bbx)的坐标和confidence,并计算所有bbx的面积
            #print('bbox_array:{0}'.format(bbox_array))
            x1, y1, x2, y2, scores = bbox_array[:,
                                                0], bbox_array[:,
                                                               1], bbox_array[:,
                                                                              2], bbox_array[:,
                                                                                             3], bbox_array[:,
                                                                                                            4]
            areas = (x2 - x1 + 1) * (y2 - y1 + 1)
            #print "areas shape = ", areas.shape
            ## 对当前类别下所有的bbx的confidence进行从高到低排序(order保存索引信息)
            order = scores.argsort()[::-1]
            #print ("order = {0}".format(order))
            keep = [
            ]  #用来存放最终保留的bbx的索引信息 ## 依次从按confidence从高到低遍历bbx,移除所有与该矩形框的IOU值大于threshold的矩形框
            while order.size > 0:
                i = order[0]
                keep.append(
                    i
                )  #保留当前最大confidence对应的bbx索引 ## 获取所有与当前bbx的交集对应的左上角和右下角坐标,并计算IOU(注意这里是同时计算一个bbx与其他所有bbx的IOU)
                xx1 = np.maximum(x1[i], x1[
                    order[1:]])  #当order.size=1时,下面的计算结果都为np.array([]),不影响最终结果
                yy1 = np.maximum(y1[i], y1[order[1:]])
                xx2 = np.minimum(x2[i], x2[order[1:]])
                yy2 = np.minimum(y2[i], y2[order[1:]])
                inter = np.maximum(0.0, xx2 - xx1 + 1) * np.maximum(
                    0.0, yy2 - yy1 + 1)
                iou = inter / (areas[i] + areas[order[1:]] - inter)
                #print("iou = {0}".format(iou))
                #print(np.where(iou<=threshold)) #输出没有被移除的bbx索引(相对于iou向量的索引)
                indexs = np.where(
                    iou <= threshold
                )[0] + 1  #获取保留下来的索引(因为没有计算与自身的IOU,所以索引相差1,需要加上)
                #print ("indexs = {0}".format(type(indexs)))
                order = order[indexs]  #更新保留下来的索引
                #print ("order = {0}".format(order))
            bbox = bbox_array[keep]
            predicts_dict[object_name] = bbox.tolist()
            #predicts_dict = predicts_dict
        return predicts_dict

    def non_max_suppress_(self,
                          predicts_dict,
                          nms_tuple=(3, 5),
                          threshold=0.7):
        has_key1 = False
        has_key2 = False
        for key, value in predicts_dict.items():
            if (key == nms_tuple[0]):
                has_key1 = True
            elif (key == nms_tuple[1]):
                has_key2 = True
        if ((has_key1 == True) and (has_key2 == True)):
            bbx_array = np.array(predicts_dict[nms_tuple[1]], dtype=np.float)
            x1, y1, x2, y2, scores = bbx_array[:,
                                               0], bbx_array[:,
                                                             1], bbx_array[:,
                                                                           2], bbx_array[:,
                                                                                         3], bbx_array[:,
                                                                                                       4]
            areas = (x2 - x1 + 1) * (y2 - y1 + 1)
            keep = []
            for bbx in predicts_dict[nms_tuple[0]]:
                xx1 = np.maximum(bbx[0], x1)
                yy1 = np.maximum(bbx[1], y1)
                xx2 = np.minimum(bbx[2], x2)
                yy2 = np.minimum(bbx[3], y2)
                inter = np.maximum(0.0, xx2 - xx1 + 1) * np.maximum(
                    0.0, yy2 - yy1 + 1)
                iou = inter / ((bbx[2] - bbx[0] + 1) *
                               (bbx[3] - bbx[1] + 1) + areas - inter)
                print('iou:{0}'.format(iou))
                print('keep:{0}'.format(
                    np.where(iou <= threshold)))  #输出没有被移除的bbx索引(相对于iou向量的索引)
                indexs = np.where(iou > threshold)[0]  #获取保留下来的索引
                print('keep index:{0}'.format(indexs))
                keep.append(indexs)
                print('keep:{0}'.format(keep))
        #bbox = bbox_array[keep]
        #predicts_dict[object_name] = bbox.tolist()
        #predicts_dict = predicts_dict

    #return predicts_dict

    def Detect(self, img, idx=0):
        """Send image for inference on a single compute stick
           
            Args:
                img: openCV image type
                idx: index of the compute stick to use for inference
            Returns:
                [<BBox>]: array of BBox type objects for each result in the detection
        """
        imgw = img.shape[1]
        imgh = img.shape[0]

        im, offx, offy, xscale, yscale = self.PrepareImage(img, self.dim)
        #print('xscale = {}, yscale = {}'.format(xscale, yscale))

        ObjectWrapper.graphHandle[idx].queue_inference_with_fifo_elem(
            ObjectWrapper.fifoInHandle[idx], ObjectWrapper.fifoOutHandle[idx],
            im.astype(np.float32), 'user object')
        out, userobj = ObjectWrapper.fifoOutHandle[idx].read_elem()

        ###################################################################
        '''
        reshaped_out = out.reshape(13, 165, 13)
        transposed_out = np.transpose(reshaped_out, (2, 0, 1))
        '''
        reshaped_out = out.reshape(self.blockwd, 165, self.blockwd)
        transposed_out = np.transpose(reshaped_out, (2, 0, 1))

        ###################################################################

        transposed_out = transposed_out.reshape(165, self.blockwd,
                                                self.blockwd)
        first_132 = transposed_out[:132]
        first_132 = first_132.reshape(33, self.blockwd * 2, self.blockwd * 2)
        last_33 = transposed_out[132:]
        #print('layer23-conv:\n{0}'.format(first_132))
        #print('layer16-conv:\n{0}'.format(last_33))

        ###################################################################
        ###out = self.Reshape(out, self.dim)
        out1 = last_33.reshape(self.blockwd * self.blockwd * 33)
        internalresults1 = self.detector.Detect(out1.astype(np.float32), 33,
                                                self.blockwd, self.blockwd,
                                                self.classes, imgw, imgh,
                                                self.threshold, self.nms,
                                                self.targetBlockwd)
        pyresults1 = [
            BBox(x, xscale, yscale, offx, offy) for x in internalresults1
        ]

        out2 = first_132.reshape(self.blockwd * 2 * self.blockwd * 2 * 33)
        internalresults2 = self.detector.Detect(out2.astype(np.float32), 33,
                                                self.blockwd * 2,
                                                self.blockwd * 2, self.classes,
                                                imgw, imgh, self.threshold,
                                                self.nms, self.blockwd * 2)
        pyresults2 = [
            BBox(x, xscale, yscale, offx, offy) for x in internalresults2
        ]
        pyresults3 = pyresults1 + pyresults2

        #return pyresults3

        pre_dic = {}
        list_all = []
        for i in np.arange(6):
            list_temp = []
            for bbx in pyresults3:
                if (bbx.objType == i):
                    list_temp.append([
                        bbx.left, bbx.top, bbx.right, bbx.bottom,
                        bbx.confidence
                    ])
                    #print(list_temp)
            if (len(list_temp) == 0):
                continue
            else:
                pre_dic[i] = list_temp
            #--list_all.append(list_temp)
        #--list_key = np.arange(6)
        #--predict_dicts = dict(zip(list_key, list_all))
        #--print('predict_dicts:{0}'.format(predict_dicts))
        #print('pre_dic:{0}'.format(pre_dic))
        nms_pred_dict = self.non_max_suppress(pre_dic)
        #print('nmsed_dict:{0}'.format(nms_pred_dict))
        if (nms_pred_dict == None):
            return []
        ##-------------------------test start
        #self.non_max_suppress_(nms_pred_dict)
        ##-------------------------test end

        nmsed_between_layer_results = []
        for object_id, bboxes in nms_pred_dict.items():
            #print('object_id:{0}'.format(object_id))
            #print('bboxes:{0}'.format(bboxes))
            for bbox in bboxes:
                bbox.append(object_id)
                #print('bbox:{0}'.format(bbox))
                BBox__ = BBox_(bbox, xscale, yscale, offx, offy)
                nmsed_between_layer_results.append(BBox__)

        return nmsed_between_layer_results
        '''out1 = last_33.reshape(13*13*33)
        #internalresults1 = self.detector.Detect(out1.astype(np.float32), 33, self.blockwd, self.blockwd, self.classes, imgw, imgh, self.threshold, self.nms, self.targetBlockwd)
        #pyresults1 = [BBox(x,xscale,yscale, offx, offy) for x in internalresults1]

        out2 = first_132.reshape(26*26*33)
        internalresults2 = self.detector.Detect(out2.astype(np.float32), 33, 26, 26, self.classes, imgw, imgh, self.threshold, self.nms, 26)
        pyresults2 = [BBox(x,xscale,yscale, offx, offy) for x in internalresults2]
        pyresults3 = pyresults1 + pyresults2
        return pyresults3'''

    def Parallel(self, img):
        """Send array of images for inference on multiple compute sticks
           
            Args:
                img: array of images to run inference on
           
            Returns:
                { <int>:[<BBox] }: A dict with key-value pairs mapped to compute stick device numbers and arrays of the detection boxs (BBox)
        """
        pyresults = {}
        for i in range(ObjectWrapper.devNum):
            im, offx, offy, w, h = self.PrepareImage(img[i], self.dim)
            ObjectWrapper.graphHandle[i].queue_inference_with_fifo_elem(
                ObjectWrapper.fifoInHandle[i], ObjectWrapper.fifoOutHandle[i],
                im.astype(np.float32), 'user object')
        for i in range(ObjectWrapper.devNum):
            out, userobj = ObjectWrapper.fifoOutHandle[i].read_elem()
            out = self.Reshape(out, self.dim)
            imgw = img[i].shape[1]
            imgh = img[i].shape[0]
            internalresults = self.detector.Detect(out.astype(np.float32),
                                                   int(out.shape[0] / self.wh),
                                                   self.blockwd, self.blockwd,
                                                   self.classes, imgw, imgh,
                                                   self.threshold, self.nms,
                                                   self.targetBlockwd)
            res = [BBox(x, w, h, offx, offy) for x in internalresults]
            if i not in pyresults:
                pyresults[i] = res
        return pyresults
示例#13
0
class ObjectWrapper():
    mvnc.global_set_option(mvnc.GlobalOption.RW_LOG_LEVEL, 2)
    devices = mvnc.enumerate_devices()
    devNum = len(devices)
    if len(devices) == 0:
        print('No MVNC devices found')
        quit()
    devHandle = []
    graphHandle = []
    fifoInHandle = []
    fifoOutHandle = []

    def __init__(self, graphfile):
        select = 1
        self.detector = YoloDetector(select)
        for i in range(ObjectWrapper.devNum):
            ObjectWrapper.devHandle.append(
                mvnc.Device(ObjectWrapper.devices[i]))
            ObjectWrapper.devHandle[i].open()
            # load blob
            with open(graphfile, mode='rb') as f:
                blob = f.read()
            # create graph instance
            ObjectWrapper.graphHandle.append(mvnc.Graph('inst' + str(i)))
            # allocate resources
            fifoIn, fifoOut = ObjectWrapper.graphHandle[i].allocate_with_fifos(
                ObjectWrapper.devHandle[i], blob)
            ObjectWrapper.fifoInHandle.append(fifoIn)
            ObjectWrapper.fifoOutHandle.append(fifoOut)

        self.dim = (416, 416)
        self.blockwd = 12
        self.wh = self.blockwd * self.blockwd
        self.targetBlockwd = 13
        self.classes = 20
        self.threshold = 0.2
        self.nms = 0.4

    def __del__(self):
        for i in range(ObjectWrapper.devNum):
            ObjectWrapper.fifoInHandle[i].destroy()
            ObjectWrapper.fifoOutHandle[i].destroy()
            ObjectWrapper.graphHandle[i].destroy()
            ObjectWrapper.devHandle[i].close()

    def PrepareImage(self, img, dim):
        imgw = img.shape[1]
        imgh = img.shape[0]
        imgb = np.empty((dim[0], dim[1], 3))
        imgb.fill(0.5)

        if imgh / imgw > dim[1] / dim[0]:
            neww = int(imgw * dim[1] / imgh)
            newh = dim[1]
        else:
            newh = int(imgh * dim[0] / imgw)
            neww = dim[0]
        offx = int((dim[0] - neww) / 2)
        offy = int((dim[1] - newh) / 2)

        imgb[offy:offy + newh,
             offx:offx + neww, :] = resize(img.copy() / 255.0, (newh, neww), 1)
        im = imgb[:, :, (2, 1, 0)]
        return im, int(offx * imgw / neww), int(
            offy * imgh / newh), neww / dim[0], newh / dim[1]

    def Reshape(self, out, dim):
        shape = out.shape
        out = np.transpose(out.reshape(self.wh, int(shape[0] / self.wh)))
        out = out.reshape(shape)
        return out

    def Detect(self, img, idx=0):
        """Send image for inference on a single compute stick
           
            Args:
                img: openCV image type
                idx: index of the compute stick to use for inference
            Returns:
                [<BBox>]: array of BBox type objects for each result in the detection
        """
        imgw = img.shape[1]
        imgh = img.shape[0]

        im, offx, offy, xscale, yscale = self.PrepareImage(img, self.dim)
        #print('xscale = {}, yscale = {}'.format(xscale, yscale))

        ObjectWrapper.graphHandle[idx].queue_inference_with_fifo_elem(
            ObjectWrapper.fifoInHandle[i], ObjectWrapper.fifoOutHandle[i],
            im.astype(np.float32), 'user object')
        out, userobj = ObjectWrapper.fifoOutHandle[idx].read_elem()
        out = self.Reshape(out, self.dim)

        internalresults = self.detector.Detect(out.astype(np.float32),
                                               int(out.shape[0] / self.wh),
                                               self.blockwd, self.blockwd,
                                               self.classes, imgw, imgh,
                                               self.threshold, self.nms,
                                               self.targetBlockwd)
        pyresults = [
            BBox(x, xscale, yscale, offx, offy) for x in internalresults
        ]
        return pyresults

    def Parallel(self, img):
        """Send array of images for inference on multiple compute sticks
           
            Args:
                img: array of images to run inference on
           
            Returns:
                { <int>:[<BBox] }: A dict with key-value pairs mapped to compute stick device numbers and arrays of the detection boxs (BBox)
        """
        pyresults = {}
        for i in range(ObjectWrapper.devNum):
            im, offx, offy, w, h = self.PrepareImage(img[i], self.dim)
            ObjectWrapper.graphHandle[i].queue_inference_with_fifo_elem(
                ObjectWrapper.fifoInHandle[i], ObjectWrapper.fifoOutHandle[i],
                im.astype(np.float32), 'user object')
        for i in range(ObjectWrapper.devNum):
            out, userobj = ObjectWrapper.fifoOutHandle[i].read_elem()
            out = self.Reshape(out, self.dim)
            imgw = img[i].shape[1]
            imgh = img[i].shape[0]
            internalresults = self.detector.Detect(out.astype(np.float32),
                                                   int(out.shape[0] / self.wh),
                                                   self.blockwd, self.blockwd,
                                                   self.classes, imgw, imgh,
                                                   self.threshold, self.nms,
                                                   self.targetBlockwd)
            res = [BBox(x, w, h, offx, offy) for x in internalresults]
            if i not in pyresults:
                pyresults[i] = res
        return pyresults
示例#14
0
class ObjectWrapper():
    # open device
    mvnc.global_set_option(mvnc.GlobalOption.RW_LOG_LEVEL, 2)
    devices = mvnc.enumerate_devices()
    devNum = len(devices)  # will have more than one probably
    print("Number of Movidius Sticks detected : ", devNum)
    if len(devices) == 0:
        print('No MVNC devices found')
        quit()
    devHandle = []  # used as device list - store devices
    graphHandle = []  # used as graph list - store graphs
    inputHandle = []
    outputHandle = []

    def __init__(self, graphfile):
        select = 1
        self.detector = YoloDetector(select)

        for i in range(
                ObjectWrapper.devNum):  # will loop for each device detected
            ObjectWrapper.devHandle.append(
                mvnc.Device(ObjectWrapper.devices[i])
            )  # pass in list of devices, append that device to device list.
            ObjectWrapper.devHandle[i].open()  # open that device.
            #opt = ObjectWrapper.devHandle[i].GetDeviceOption(mvnc.DeviceOption.OPTIMISATION_LIST)
            # load blob
            with open(graphfile, mode='rb') as f:
                blob = f.read()
            graph = mvnc.Graph('graph1')  # creates a graph instance

            # Allocate the graph and store to array
            #ObjectWrapper.graphHandle.append(graph.allocate(ObjectWrapper.devHandle[i], blob))
            input_fifo, output_fifo = graph.allocate_with_fifos(
                ObjectWrapper.devHandle[i], blob)

            ObjectWrapper.graphHandle.append(graph)
            ObjectWrapper.inputHandle.append(input_fifo)
            ObjectWrapper.outputHandle.append(output_fifo)

            self.dim = (416, 416)
            self.blockwd = 12
            self.wh = self.blockwd * self.blockwd
            self.targetBlockwd = 13
            self.classes = 1
            self.threshold = 0.2
            self.nms = 0.4

    #def __del__(self):

    def PrepareImage(self, img, dim):
        imgw = img.shape[1]
        imgh = img.shape[0]
        imgb = np.empty((dim[0], dim[1], 3))
        imgb.fill(0.5)

        if imgh / imgw > dim[1] / dim[0]:
            neww = int(imgw * dim[1] / imgh)
            newh = dim[1]
        else:
            newh = int(imgh * dim[0] / imgw)
            neww = dim[0]
        offx = int((dim[0] - neww) / 2)
        offy = int((dim[1] - newh) / 2)

        imgb[offy:offy + newh,
             offx:offx + neww, :] = resize(img.copy() / 255.0, (newh, neww), 1)
        im = imgb[:, :, (2, 1, 0)]
        return im, int(offx * imgw / neww), int(
            offy * imgh / newh), neww / dim[0], newh / dim[1]

    def Reshape(self, out, dim):
        shape = out.shape
        out = np.transpose(out.reshape(self.wh, int(shape[0] / self.wh)))
        out = out.reshape(shape)
        return out

    def Detect(self, img):
        print("DOING SINGLE DETECT")
        imgw = img.shape[1]
        imgh = img.shape[0]

        im, offx, offy, xscale, yscale = self.PrepareImage(img, self.dim)

        ####Edit
        ObjectWrapper.graphHandle[0].queue_inference_with_fifo_elem(
            ObjectWrapper.inputHandle[0], ObjectWrapper.outputHandle[0],
            im.astype(np.float32), 'user object')
        out, userobj = ObjectWrapper.outputHandle[0].read_elem(
        )  # Get result from output queue
        ####

        out = self.Reshape(out, self.dim)

        internalresults = self.detector.Detect(out.astype(np.float32),
                                               int(out.shape[0] / self.wh),
                                               self.blockwd, self.blockwd,
                                               self.classes, imgw, imgh,
                                               self.threshold, self.nms,
                                               self.targetBlockwd)
        pyresults = [
            BBox(x, xscale, yscale, offx, offy) for x in internalresults
        ]
        print(pyresults)
        return pyresults

    def Parallel(self, img):
        print("DOING PARALLEL")
        pyresults = {}
        for i in range(ObjectWrapper.devNum):
            im, offx, offy, w, h = self.PrepareImage(img[i], self.dim)
            # Edit
            ObjectWrapper.graphHandle[i].queue_inference_with_fifo_elem(
                ObjectWrapper.inputHandle[i], ObjectWrapper.outputHandle[0],
                im.astype(np.float32), 'user object')
            #ObjectWrapper.graphHandle[i].LoadTensor(im.astype(np.float16), 'user object')

        for i in range(ObjectWrapper.devNum):
            # Edit
            out, userobj = ObjectWrapper.outputHandle[i].read_elem(
            )  # Get result from output queue
            #out, userobj = ObjectWrapper.graphHandle[i].GetResult()

            out = self.Reshape(out, self.dim)
            imgw = img[i].shape[1]
            imgh = img[i].shape[0]
            internalresults = self.detector.Detect(out.astype(np.float32),
                                                   int(out.shape[0] / self.wh),
                                                   self.blockwd, self.blockwd,
                                                   self.classes, imgw, imgh,
                                                   self.threshold, self.nms,
                                                   self.targetBlockwd)
            res = [BBox(x, w, h, offx, offy) for x in internalresults]
            if i not in pyresults:
                pyresults[i] = res
        return pyresults