if objects[i] in dz.observation_dict['Standard_stars']: sigclip = 10.0 else: if colors_arm[i] == 'Blue arm': sigclip = 10.0 elif colors_arm[i] == 'Red arm': sigclip = 10.0 print '\n-Treating:', Files_Name[i],' ', i, '/', len(Files_Name), objects[i] + '_lacosmic', sigclip, '\n' gain = pyfits.getval(Files_Folder[i] + Files_Name[i], 'GAIN' ,0) readnoise = pyfits.getval(Files_Folder[i] + Files_Name[i], 'READNOIS' ,0) lacosmic_param = [gain, readnoise, sigclip] #Frame cosmic object c = cosmics.cosmicsimage(fitsdata, gain=lacosmic_param[0], readnoise=lacosmic_param[1], sigclip = lacosmic_param[2]) #Run the fitting c.run(maxiter = 4) #Write the cleaned image into a new FITS file, conserving the original header : output_clean = Files_Folder[i] + Files_Name[i][0:Files_Name[i].rfind('.')] + '_cr.fits' output_mask = Files_Folder[i] + Files_Name[i][0:Files_Name[i].rfind('.')] + '_mask.fits' #Delete the file if it already exists if os.path.isfile(output_clean): os.remove(output_clean) if os.path.isfile(output_mask): os.remove(output_mask) #Store the frames