covar_out = batch_dir + "phi_theta_lookup_lin_covar_training.csv"
    weighted_cv_out = batch_dir + "rshmetalog_lin_weighted_cv.csv"

# covar type
globalBool = False
localBool = True

scaling_coef = 0.19546

# load img meta
hemimeta = pd.read_csv(batch_dir + 'rshmetalog.csv')
imsize = hemimeta.img_size_px[0]

# merge with covariant
var_in = 'C:\\Users\\Cob\\index\\educational\\usask\\research\\masters\\data\\lidar\\products\\mb_65\\dSWE\\19_045-19_050\\dswe_19_045-19_050_r.25m.tif'
var = raslib.raster_to_pd(var_in, 'covariant')
hemi_var = pd.merge(hemimeta,
                    var,
                    left_on=('x_utm11n', 'y_utm11n'),
                    right_on=('x_coord', 'y_coord'),
                    how='inner')

# load angle template
angle_lookup = pd.read_csv(batch_dir + "phi_theta_lookup.csv")
phi = np.full((imsize, imsize), np.nan)
phi[(np.array(angle_lookup.x_index),
     np.array(angle_lookup.y_index))] = angle_lookup.phi * 180 / np.pi
max_phi = 90  # in degrees

# filter to desired images
#hemiList = hemi_swe.loc[(hemi_swe.swe.values >= 0) & (hemi_swe.swe.values <= 150), :]
示例#2
0
def main():
    """
    Build grid of points with consistent indexing at various resolutions
    :return:
    """

    import pandas as pd
    import numpy as np
    from libraries import raslib
    import os

    batch_dir = 'C:\\Users\\Cob\\index\\educational\\usask\\research\\masters\\data\\lidar\\site_library\\hemi_grid_points\\mb_65_r.25m_snow_on_offset0\\'

    # build point list from DEM
    dem_in = 'C:\\Users\\Cob\\index\\educational\\usask\\research\\masters\\data\\lidar\\19_052\\19_052_las_proc\\OUTPUT_FILES\\DEM\\interpolated\\19_052_dem_interpolated_r.25m.tif'  # snow-on
    # dem_in = 'C:\\Users\\Cob\\index\\educational\\usask\\research\\masters\\data\\lidar\\19_149\\19_149_las_proc\\OUTPUT_FILES\\DEM\\interpolated\\19_149_dem_interpolated_r.25m.tif'  # snow-off

    vertical_offset = 0

    mb_65_poly = 'C:\\Users\\Cob\\index\\educational\\usask\\research\\masters\\data\\lidar\\site_library\\mb_65_poly.shp'
    mb_15_poly = 'C:\\Users\\Cob\\index\\educational\\usask\\research\\masters\\data\\lidar\\site_library\\mb_15_poly.shp'
    uf_poly = 'C:\\Users\\Cob\\index\\educational\\usask\\research\\masters\\data\\lidar\\site_library\\upper_forest_poly_UTM11N.shp'
    uc_poly = 'C:\\Users\\Cob\\index\\educational\\usask\\research\\masters\\data\\lidar\\site_library\\upper_clearing_poly_UTM11N.shp'

    # for plot mappings
    resolution = ['.05', '.10', '.25', '1.00']
    template_scheme = 'C:\\Users\\Cob\\index\\educational\\usask\\research\\masters\\data\\lidar\\19_149\\19_149_las_proc\\OUTPUT_FILES\\TEMPLATES\\19_149_all_point_density_r<RES>m.bil'

    # dem_in = 'C:\\Users\\jas600\\workzone\\data\\hemigen\\hemi_lookups\\19_149_dem_r1.00m_q0.25_interpolated_min1.tif'
    # site_poly = 'C:\\Users\\jas600\\workzone\\data\\hemigen\\hemi_lookups\\upper_forest_poly_UTM11N.shp'
    # batch_dir = 'C:\\Users\\jas600\\workzone\\data\\hemigen\\uf_1m_pr_0_os_0.5\\'

    # create batch dir if does not exist
    if not os.path.exists(batch_dir):
        os.makedirs(batch_dir)

    pts = raslib.raster_to_pd(dem_in, 'z_m', include_nans=True)
    pts.z_m = pts.z_m + vertical_offset  # shift z_m by vertical offset

    # add point id
    pts = pts.reset_index()
    pts.columns = ['id', 'x_utm11n', 'y_utm11n', 'x_index', 'y_index', 'z_m']

    # # add flag for mb_65
    # load dem as template
    site_plot = raslib.raster_load(dem_in)
    # fill data with zeros
    site_plot.data = np.full((site_plot.rows, site_plot.cols), 0)
    # save to file
    mb_65_plot_dir = batch_dir + 'mb_65_plot_over_dem.tiff'
    raslib.raster_save(site_plot, mb_65_plot_dir, data_format='byte')
    # burn site polygon into plot data as ones
    raslib.raster_burn(mb_65_plot_dir, mb_65_poly, 1)
    # load plot data
    mb_65_plot = raslib.raster_load(mb_65_plot_dir)

    # # add flag for mb_15
    # load template
    site_plot = raslib.raster_load(dem_in)
    # fill data with zeros
    site_plot.data = np.full((site_plot.rows, site_plot.cols), 0)
    # save to file
    mb_15_plot_dir = batch_dir + 'mb_15_plot_over_dem.tiff'
    raslib.raster_save(site_plot, mb_15_plot_dir, data_format='byte')
    # burn site polygon into plot data as ones
    raslib.raster_burn(mb_15_plot_dir, mb_15_poly, 1)
    # load plot data
    mb_15_plot = raslib.raster_load(mb_15_plot_dir)

    # # add flag for (UF)
    # load template
    site_plot = raslib.raster_load(dem_in)
    # fill data with zeros
    site_plot.data = np.full((site_plot.rows, site_plot.cols), 0)
    # save to file
    uf_plot_dir = batch_dir + 'uf_plot_over_dem.tiff'
    raslib.raster_save(site_plot, uf_plot_dir, data_format='byte')
    # burn site polygon into plot data as ones
    raslib.raster_burn(uf_plot_dir, uf_poly, 1)
    # load plot data
    uf_plot = raslib.raster_load(uf_plot_dir)

    # merge plot data with points
    pts_index = (pts.y_index.values, pts.x_index.values)
    pts = pts.assign(mb_65=mb_65_plot.data[pts_index].astype(bool),
                     mb_15=mb_15_plot.data[pts_index].astype(bool),
                     uf=uf_plot.data[pts_index].astype(bool))

    # export point lookup as csv
    pts_dir = batch_dir + 'dem_r.25_points.csv'
    pts.to_csv(pts_dir, index=False)

    # format point ids as raster
    id_raster = raslib.raster_load(dem_in)
    id_raster.data = np.full([id_raster.rows, id_raster.cols],
                             id_raster.no_data).astype(int)
    id_raster.data[pts_index] = pts.id
    # save id raster to file
    id_raster_out = batch_dir + 'dem_r.25_point_ids.tif'
    raslib.raster_save(id_raster, id_raster_out, data_format="int32")

    # point subsets
    pts_mb_65 = pts[pts.mb_65]
    pts_dir = batch_dir + 'dem_r.25_points_mb_65.csv'
    pts_mb_65.to_csv(pts_dir, index=False)

    pts_mb_15 = pts[pts.mb_15]
    pts_dir = batch_dir + 'dem_r.25_points_mb_15.csv'
    pts_mb_15.to_csv(pts_dir, index=False)

    pts_uf = pts[pts.uf]
    pts_dir = batch_dir + 'dem_r.25_points_uf.csv'
    pts_uf.to_csv(pts_dir, index=False)

    # create cookie cutters of sites for each resolution
    for rr in resolution:
        file_out = 'uf_plot_r' + rr + 'm.tif'
        site_poly = uf_poly
        template_in = template_scheme.replace('<RES>', rr)
        ras = raslib.raster_load(template_in)
        ras.data = np.full((ras.rows, ras.cols), 0)
        ras.no_data = 0
        ras_out = batch_dir + file_out
        raslib.raster_save(ras, ras_out, data_format='byte')
        raslib.raster_burn(ras_out, site_poly, 1)

    for rr in resolution:
        file_out = 'uc_plot_r' + rr + 'm.tif'
        site_poly = uc_poly
        template_in = template_scheme.replace('<RES>', rr)
        ras = raslib.raster_load(template_in)
        ras.data = np.full((ras.rows, ras.cols), 0)
        ras.no_data = 0
        ras_out = batch_dir + file_out
        raslib.raster_save(ras, ras_out, data_format='byte')
        raslib.raster_burn(ras_out, site_poly, 1)

    for rr in resolution:
        file_out = 'site_plots_r' + rr + 'm.tif'
        template_in = template_scheme.replace('<RES>', rr)
        ras = raslib.raster_load(template_in)
        ras.data = np.full((ras.rows, ras.cols), 0)
        ras.no_data = 0
        ras_out = batch_dir + file_out
        raslib.raster_save(ras, ras_out, data_format='uint16')
        raslib.raster_burn(ras_out, uf_poly, 1)
        raslib.raster_burn(ras_out, uc_poly, 2)

    for rr in resolution:
        file_out = 'mb_15_plot_r' + rr + 'm.tif'
        site_poly = mb_15_poly
        template_in = template_scheme.replace('<RES>', rr)
        ras = raslib.raster_load(template_in)
        ras.data = np.full((ras.rows, ras.cols), 0)
        ras.no_data = 0
        ras_out = batch_dir + file_out
        raslib.raster_save(ras, ras_out, data_format='byte')
        raslib.raster_burn(ras_out, site_poly, 1)

    for rr in resolution:
        file_out = 'mb_65_plot_r' + rr + 'm.tif'
        site_poly = mb_65_poly
        template_in = template_scheme.replace('<RES>', rr)
        ras = raslib.raster_load(template_in)
        ras.data = np.full((ras.rows, ras.cols), 0)
        ras.no_data = 0
        ras_out = batch_dir + file_out
        raslib.raster_save(ras, ras_out, data_format='byte')
        raslib.raster_burn(ras_out, site_poly, 1)
plot = df.hvplot(kind="scatter", x="col1", y="col2")
show(hv.render(plot))

# basic datashader
import datashader as ds
import pandas as pd
import numpy as np
import datashader.transfer_functions as tf
from datashader.utils import export_image

hs_in = "C:\\Users\\Cob\\index\\educational\\usask\\research\\masters\\data\\lidar\\products\\hs\\19_052\\hs_19_052_res_.10m.tif"
dnt_in = "C:\\Users\\Cob\\index\\educational\\usask\\research\\masters\\data\\lidar\\19_149\\19_149_snow_off\\OUTPUT_FILES\\DNT\\19_149_snow_off_627975_5646450_spike_free_chm_.10m_kho_distance_.10m.tif"
img_out = "C:\\Users\\Cob\\index\\educational\\usask\\research\\masters\\graphics\\ds_test_hs_vs_dnt.png"

# load parent
parent = raslib.raster_to_pd(hs_in, 'hs')
merged = raslib.pd_sample_raster(parent, dnt_in, 'dnt')

import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt

plt.scatter(merged.hs, merged.dnt)

cvs = ds.Canvas(plot_width=400, plot_height=400)
agg = cvs.points(data, 'hs', 'dnt', agg=ds.count('dnt'))
img = tf.shade(agg, cmap=['lightblue', 'darkblue'], how='log')
export_image(img, img_out)
#####

# datashader + holoviews + matplotlib
示例#4
0
# it appears that the x
# check out the image of both...
import numpy as np
data = data_4
img = np.full((np.max(data.y_index) + 1, np.max(data.x_index) + 1), np.nan)
img[data.y_index, data.x_index] = data.count_4

import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
plt.imshow(img, interpolation='nearest')

ras = raslib.raster_load(ras_1_in)

# [y_index, x_index] = ~T * [x_coord, y_coord]
data_1 = raslib.raster_to_pd(ras_1_in, 'count_1')

train = ~ras.T1 * (data_1.x_coord, data_1.y_coord)
np.max(np.array(data_1.x_index) - np.array(train[1]))
np.max(np.array(data_1.y_index) - np.array(train[0]))

# [x_coord, y_coord] = T * [y_index, x_index]
peace = ras.T1 * (data_1.x_index, data_1.y_index)
np.all(np.array(data_1.x_coord) == np.array(peace[0]))
np.all(np.array(data_1.y_coord) == np.array(peace[1]))

# plot of count_1 and count_2 in parent index

data_5 = raslib.pd_sample_raster(None,
                                 None,
                                 ras_5_in,
import numpy as np
from PIL import Image
import pandas as pd

# batch_dir = 'C:\\Users\\Cob\\index\\educational\\usask\\research\\masters\\data\\lidar\\19_149\\19_149_snow_off\\OUTPUT_FILES\\synthetic_hemis\\uf_1m_pr_.15_os_10\\outputs\\'
batch_dir = 'C:\\Users\\jas600\\workzone\\data\\hemigen\\mb_15_1m_pr.15_os10\\outputs\\'
imsize = 1000
globalBool = True
localBool = True

# load img meta
hemimeta = pd.read_csv(batch_dir + 'hemimetalog.csv')

# merge with swe
swe_in = 'C:\\Users\\jas600\\workzone\\data\\cross_covar\\swe_19_045_r1.00m_q0.25.tif'
swe = raslib.raster_to_pd(swe_in, 'swe')
hemi_swe = pd.merge(hemimeta,
                    swe,
                    left_on=('x_utm11n', 'y_utm11n'),
                    right_on=('x_coord', 'y_coord'),
                    how='inner')

# filter to desited images
hemiList = hemi_swe.loc[(hemi_swe.swe.values >= 0) &
                        (hemi_swe.swe.values <= 150), :]

# covar type

# stack binary canopy data
threshold = 128