N = input("Enter N value:") ############################################################################################ #################################### EIGEN FACES TRAINING AND TESTING ##################### ############################################################################################ misrate = [[0.0 for x in xrange(3*N+1)] for x in xrange(10)] total = [0.0 for x in xrange(10)] percent = 0 for i in xrange(10) : tr,t = randomgenerator(N) #print r,test Xtrain,ytrain = read_images(os.getcwd()+"\..\data", N, tr) Xtest,ytest = read_images(os.getcwd()+"\..\data", 11-N, t) # Princical Component Analysis for feature reduction eigenvectors, Z, mu = pca(vectorize(Xtrain), ytrain) l = 0 for num_components in range(0,15*N+1,5): W,M = eigenface(eigenvectors,Z,num_components) Wnew = test(vectorize(Xtest), ytest, W, M, mu) count = 0 idx = knnsearch(W,Wnew) idx = [k+1 for k in idx] idx.insert(0,0) count = 0 for j in xrange(1,16) : for k in xrange(1,12-N) : if idx[(j-1)*(11-N)+k] < (j-1)*N+1 or idx[(j-1)*(11-N)+k] > j*N : count = count+1 misrate[i][l] = count/float(15*(11-N)) l = l+1
misrate = [[0.0 for x in xrange(3*N+1)] for x in xrange(10)] misrate = np.asarray(misrate) total = [0.0 for x in xrange(10)] y = [] k = 1 for i in xrange(15): for j in xrange(N): y.append(k) k = k+1 percent = 0 for ei in xrange(10) : tr,t = randomgenerator(N) x,yyy = read_images(os.getcwd()+"\..\data", N, tr) Xtest,ytest = read_images(os.getcwd()+"\..\data", 11-N, t) x = np.asarray(vectorize(x)) y = np.asarray(y).reshape(-1,1) Xtest = np.asarray(vectorize(Xtest)) x = x.T ii = 0 for num_components in xrange(5,15) : [W,mu] = fisherfaces(x,y,num_components) #W = np.asarray(W) w = np.dot(x,W) wp = np.dot(Xtest.T,W) idx = ffknnsearch(w,wp) idx = [k+1 for k in idx] idx.insert(0,0) count = 0 for j in xrange(1,16) : for k in xrange(1,12-N) :
N = input("Enter N value:") ############################################################################################ #################################### EIGEN FACES TRAINING AND TESTING ##################### ############################################################################################ misrate = [[0.0 for x in xrange(3 * N + 1)] for x in xrange(10)] total = [0.0 for x in xrange(10)] percent = 0 for i in xrange(10): tr, t = randomgenerator(N) #print r,test Xtrain, ytrain = read_images(os.getcwd() + "\..\data", N, tr) Xtest, ytest = read_images(os.getcwd() + "\..\data", 11 - N, t) # Princical Component Analysis for feature reduction eigenvectors, Z, mu = pca(vectorize(Xtrain), ytrain) l = 0 for num_components in range(0, 15 * N + 1, 5): W, M = eigenface(eigenvectors, Z, num_components) Wnew = test(vectorize(Xtest), ytest, W, M, mu) count = 0 idx = knnsearch(W, Wnew) idx = [k + 1 for k in idx] idx.insert(0, 0) count = 0 for j in xrange(1, 16): for k in xrange(1, 12 - N): if idx[(j - 1) * (11 - N) + k] < (j - 1) * N + 1 or idx[(j - 1) * (11 - N) + k] > j * N: count = count + 1