示例#1
0
def fisher_vectors(X,
                   y,
                   descriptors_indices,
                   codebook,
                   normalization=None,
                   spatial_pyramid=False):
    from libraries.yael.yael import ynumpy

    # Compute Fisher vector for each image (which can have multiple descriptors)
    X = np.float32(X)
    fv = np.array([
        ynumpy.fisher(codebook,
                      X[descriptors_indices == i],
                      include=['mu', 'sigma'])
        for i in range(0,
                       descriptors_indices.max() + 1)
    ])
    # TODO: Spatial Pyramid Option

    # Normalization
    if normalization == 'l1':
        fisher_vect = fv / np.sum(np.abs(fv), axis=1, keepdims=True)
    elif normalization == 'l2':
        fisher_vect = fv / np.linalg.norm(fv, keepdims=True)
    elif normalization == 'power':
        fisher_vect = np.multiply(np.sign(fv), np.sqrt(np.absolute(fv)))
    else:
        fisher_vect = fv
    labels = [
        y[descriptors_indices == i][0]
        for i in range(0,
                       descriptors_indices.max() + 1)
    ]
    return fisher_vect, np.array(labels)
示例#2
0
def train():
    best_accuracy = 0
    best_params = {}
    cv_results = {}

    base_model = VGG16(weights='imagenet')

    # crop the model up to a certain layer
    model = Model(input=base_model.input,
                  output=base_model.get_layer('block5_conv2').output)

    # Read the training set
    train_images_filenames = cPickle.load(
        open('./dataset/train_images_filenames.dat', 'r'))
    test_images_filenames = cPickle.load(
        open('./dataset/test_images_filenames.dat', 'r'))
    train_labels = cPickle.load(open('./dataset/train_labels.dat', 'r'))
    test_labels = cPickle.load(open('./dataset/test_labels.dat', 'r'))
    io.log('\nLoaded {} train images.'.format(len(train_images_filenames)))
    io.log('\nLoaded {} test images.'.format(len(test_images_filenames)))

    # read and process training images
    print 'Getting features from training images'
    start_feature = time.time()
    Train_descriptors = []
    Train_label_per_descriptor = []

    for i in range(len(train_images_filenames)):
        img = image.load_img(train_images_filenames[i], target_size=(224, 224))
        x = image.img_to_array(img)
        x = np.expand_dims(x, axis=0)
        x = preprocess_input(x)

        # get the features from images
        features = model.predict(x)
        features = features[0, :, :, :]
        descriptor = features.reshape(features.shape[0] * features.shape[1],
                                      features.shape[2])

        Train_descriptors.append(descriptor)
        Train_label_per_descriptor.append(train_labels[i])

    # Put all descriptors in a numpy array to compute PCA and GMM
    size_descriptors = Train_descriptors[0].shape[1]
    Desc = np.zeros(
        (np.sum([len(p) for p in Train_descriptors]), size_descriptors),
        dtype=np.uint8)
    startingpoint = 0
    for i in range(len(Train_descriptors)):
        Desc[startingpoint:startingpoint +
             len(Train_descriptors[i])] = Train_descriptors[i]
        startingpoint += len(Train_descriptors[i])
    feature_time = time.time() - start_feature
    io.log('Elapsed time: {:.2f} s'.format(feature_time))

    for dim_red in pca_reduction:
        io.log('Applying PCA ... ')
        start_pca = time.time()
        reduction = np.int(dim_red * Desc.shape[1])
        pca = decomposition.PCA(n_components=reduction)
        pca.fit(Desc)
        Desc_pca = np.float32(pca.transform(Desc))
        pca_time = time.time() - start_pca
        io.log('Elapsed time: {:.2f} s'.format(pca_time))
        for k in codebook_size:
            io.log('Creating GMM model (k = {})'.format(k))
            start_gmm = time.time()
            gmm = ynumpy.gmm_learn(np.float32(Desc_pca), k)
            io.save_object(gmm, 'gmm_NN_pca_{}_k_{}'.format(reduction, k))
            gmm_time = time.time() - start_gmm
            io.log('Elapsed time: {:.2f} s'.format(gmm_time))

            io.log('Getting Fisher vectors from training set...')
            start_fisher = time.time()
            fisher = np.zeros((len(Train_descriptors), k * reduction * 2),
                              dtype=np.float32)
            for i in xrange(len(Train_descriptors)):
                descriptor = Train_descriptors[i]
                descriptor = np.float32(pca.transform(descriptor))
                fisher[i, :] = ynumpy.fisher(gmm,
                                             descriptor,
                                             include=['mu', 'sigma'])
                # L2 normalization - reshape to avoid deprecation warning, checked that the result is the same
                fisher[i, :] = preprocessing.normalize(fisher[i, :].reshape(
                    1, -1),
                                                       norm='l2')

            fisher_time = time.time() - start_fisher
            io.log('Elapsed time: {:.2f} s'.format(fisher_time))

            io.log('Scaling features...')
            start_scaler = time.time()
            stdSlr = StandardScaler().fit(fisher)
            D_scaled = stdSlr.transform(fisher)
            scaler_time = time.time() - start_scaler
            io.log('Elapsed time: {:.2f} s'.format(scaler_time))

            io.log('Optimizing SVM hyperparameters...')
            start_crossvalidation = time.time()
            svm = SVC(kernel='precomputed')
            random_search = RandomizedSearchCV(svm,
                                               params_distribution,
                                               n_iter=n_iter,
                                               scoring='accuracy',
                                               refit=False,
                                               cv=3,
                                               verbose=1)
            # Precompute Gram matrix
            gram = kernels.intersection_kernel(D_scaled, D_scaled)
            random_search.fit(gram, train_labels)
            crossvalidation_time = time.time() - start_crossvalidation
            io.log('Elapsed time: {:.2f} s'.format(crossvalidation_time))

            # Convert MaskedArrays to ndarrays to avoid unpickling bugs
            results = random_search.cv_results_
            results['param_C'] = results['param_C'].data

            # Appending all parameter-scores combinations
            cv_results.update({
                (k): {
                    'cv_results':
                    results,
                    'feature_time':
                    feature_time,
                    'pca_time':
                    pca_time,
                    'gmm_time':
                    gmm_time,
                    'fisher_time':
                    fisher_time,
                    'scaler_time':
                    scaler_time,
                    'crossvalidation_time':
                    crossvalidation_time,
                    'total_time':
                    feature_time + pca_time + gmm_time + fisher_time +
                    scaler_time + crossvalidation_time
                }
            })
            io.save_object(cv_results,
                           'intersection_svm_CNNfeatures',
                           ignore=True)

            # Obtaining the parameters which yielded the best accuracy
            if random_search.best_score_ > best_accuracy:
                best_accuracy = random_search.best_score_
                best_params = random_search.best_params_
                best_params.update({'k': k, 'pca': dim_red})

            io.log('-------------------------------\n')
    io.log('\nSaving best parameters...')
    io.save_object(best_params,
                   'best_params_intersection_svm_CNNfeatures',
                   ignore=True)
    best_params_file = os.path.abspath(
        './ignore/best_params_intersection_svm_CNNfeatures.pickle')
    io.log('Saved at {}'.format(best_params_file))

    io.log('\nSaving all cross-validation values...')
    io.save_object(cv_results, 'intersection_svm_CNNfeatures', ignore=True)
    cv_results_file = os.path.abspath(
        './ignore/intersection_svm_CNNfeatures.pickle')
    io.log('Saved at {}'.format(cv_results_file))

    io.log('\nBEST PARAMS')
    io.log('k={}, dim_red={}, C={} --> accuracy: {:.3f}'.format(
        best_params['k'], best_params['pca'], best_params['C'], best_accuracy))
示例#3
0
    pca = decomposition.PCA(n_components=pca_reduction)
    pca.fit(Desc)
    Desc = np.float32(pca.transform(Desc))

    print('Computing gmm with ' + str(k) + ' centroids')
    gmm = ynumpy.gmm_learn(np.float32(Desc), k)
    io.save_object(gmm, 'gmm_NN_pca256')


    # Compute the fisher vectors of the training images
    print('Computing fisher vectors')
    fisher = np.zeros((len(Train_descriptors), k * pca_reduction * 2), dtype=np.float32)
    for i in xrange(len(Train_descriptors)):
        descriptor = Train_descriptors[i]
        descriptor = np.float32(pca.transform(descriptor))
        fisher[i, :] = ynumpy.fisher(gmm, descriptor, include=['mu', 'sigma'])
        # L2 normalization - reshape to avoid deprecation warning, checked that the result is the same
        fisher[i, :] = preprocessing.normalize(fisher[i, :].reshape(1,-1), norm='l2')


    # Train an SVM classifier
    stdSlr = StandardScaler().fit(fisher)
    D_scaled = stdSlr.transform(fisher)
    print 'Training the SVM classifier...'
    clf = svm.SVC(kernel=kernels.intersection_kernel, C=C, probability=True).fit(D_scaled, train_labels)
    #clf = io.load_object('clf_NN_pca256')
    #io.save_object(clf, 'clf_NN_pca256')
    #clf = io.load_object('clf_NN',ignore=False)

    # get all the test data and predict their labels
    fisher_test = np.zeros((len(test_images_filenames), k * pca_reduction * 2), dtype=np.float32)
示例#4
0
for i in range(len(Train_descriptors)):
    D[startingpoint:startingpoint + len(Train_descriptors[i])] = Train_descriptors[i]
    startingpoint += len(Train_descriptors[i])

k = 32

print 'Computing gmm with ' + str(k) + ' centroids'
init = time.time()
gmm = ynumpy.gmm_learn(np.float32(D), k)
end = time.time()
print 'Done in ' + str(end - init) + ' secs.'

init = time.time()
fisher = np.zeros((len(Train_descriptors), k * 128 * 2), dtype=np.float32)
for i in xrange(len(Train_descriptors)):
    fisher[i, :] = ynumpy.fisher(gmm, Train_descriptors[i], include=['mu', 'sigma'])

end = time.time()
print 'Done in ' + str(end - init) + ' secs.'

# Train a linear SVM classifier

stdSlr = StandardScaler().fit(fisher)
D_scaled = stdSlr.transform(fisher)
print 'Training the SVM classifier...'
clf = svm.SVC(kernel='linear', C=1).fit(D_scaled, train_labels)
print 'Done!'

# get all the test data and predict their labels
fisher_test = np.zeros((len(test_images_filenames), k * 128 * 2), dtype=np.float32)
for i in range(len(test_images_filenames)):
  #  pca = decomposition.PCA(n_components=pca_reduction)
  #  pca.fit(Desc)
  #  Desc = np.float32(pca.transform(Desc))

    print('Computing gmm with ' + str(k) + ' centroids')
    gmm = ynumpy.gmm_learn(np.float32(Desc), k)
    io.save_object(gmm, 'gmm_NN_agg_features_max')


    # Compute the fisher vectors of the training images
    print('Computing fisher vectors')
    fisher = np.zeros((len(Train_descriptors), k * 1 * 2), dtype=np.float32)
    for i in xrange(len(Train_descriptors)):
        descriptor = Train_descriptors[i]
       # descriptor = np.float32(pca.transform(descriptor))
        aux=ynumpy.fisher(gmm, descriptor, include=['mu', 'sigma'])
        fisher[i, :] = np.reshape(aux, [1, aux.shape[0]])
        # L2 normalization - reshape to avoid deprecation warning, checked that the result is the same
        fisher[i, :] = preprocessing.normalize(fisher[i, :].reshape(1,-1), norm='l2')


    # Train an SVM classifier
    stdSlr = StandardScaler().fit(fisher)
    D_scaled = stdSlr.transform(fisher)
    print 'Training the SVM classifier...'
    clf = svm.SVC(kernel=kernels.intersection_kernel, C=C, probability=True).fit(D_scaled, train_labels)
    io.save_object(clf, 'clf_NN_pca256')
    #clf = io.load_object('clf_NN',ignore=False)

    # get all the test data and predict their labels
    fisher_test = np.zeros((len(test_images_filenames), k * 1* 2), dtype=np.float32)