def __init__(self, in_channel=32): super(NLFilter3d, self).__init__() self.inner_channel = in_channel self.conv = BasicConv(in_channel, self.inner_channel, bn=True, relu=False, kernel_size=3, stride=1, padding=1) self.conv_refine = BasicConv(in_channel + self.inner_channel, in_channel, is_3d=True, bn=True, relu=True, kernel_size=3, stride=1, padding=1) self.getweights = GetWeights() self.nlf = NLFIter()
def __init__(self, in_channel=32): super(NLFilter, self).__init__() self.inner_channel = in_channel self.conv_refine = BasicConv(in_channel + self.inner_channel, in_channel, bn=True, relu=True, kernel_size=3, stride=1, padding=1) self.getweights = nn.Sequential( BasicConv(in_channel, self.inner_channel, bn=True, l2=False, relu=False, kernel_size=3, stride=1, padding=1), GetWeights()) # self.amplify = nn.Conv2d(5, 5, kernel_size=1, stride=1, padding=0, bias=False) # self.softmax = nn.Softmax(dim=1) self.nlf = NLFIter()