synapses = networks[1][5] network_name = networks[1][6] #Save Config dict_config = { "neurons": neurons, "sensory_neurons": (sensory_neurons_in, sensory_neurons_out), "save": to_save, "step_input": stimuli_dict, "synapses": synapses, "name": network_name } config_dict_hash = hashDict(dict_config) saveKey(config_dict_hash + "_input" , dict_config , output_dir) saveFile( config_file_name , output_dir + "/" + config_dict_hash + "_input.py") #Define robot if sensory_neurons_in or sensory_neurons_out: robot = RobotYARP(mode=args.robot_mode) else: robot = None #TODO: Reset robot original position? (and maybe gz-world status?) if robot: if args.reset_position or args.reset_only: print "RESETTING"
#fix parentheses: commands = [ i for i in commands if not missing(i) ] #set just to be sure no duplicate runs real_commands = set(commands) #TODO: #FIXME: remove "--show-image" etc to prevent different hashes of same config session_hash = hashDict(real_commands) #Save commands list is_folder("./commands") commands_file = "./commands/" + session_hash + "_commands" cprint ("Saving %s commands to file: %s" % (len(real_commands), commands_file), 'info') saveKey(commands_file, commands) # Debug: re-enable in release # cprint("Running in 5s", "warning") # time.sleep(5) #Start is_folder (output_dir) cprint("We'll use %s as output dir" % (output_dir), 'info') #Let's run the simulations (surely not the best way, but does the job) #TODO: add the loop inside Runner? start = time.time() try: run = import_history(output_dir + "/" + session_hash + "_batch") recover_from_lap = run["cycle"]