示例#1
0
def create_dataloader():
    train_joint_transform = joint_augment.Compose([
        joint_augment.To_PIL_Image(),
        joint_augment.RandomAffine(0, translate=(0.125, 0.125)),
        joint_augment.RandomRotate((-180, 180)),
        joint_augment.FixResize(256)
    ])
    transform = standard_augment.Compose([
        standard_augment.to_Tensor(),
        # standard_augment.normalize([cfg.DATASET.MEAN], [cfg.DATASET.STD])])
        standard_augment.normalize_meanstd()
    ])
    target_transform = standard_augment.Compose([standard_augment.to_Tensor()])

    if cfg.DATASET.NAME == 'acdc':
        train_set = AcdcDataset(data_list=cfg.DATASET.TRAIN_LIST,
                                joint_augment=train_joint_transform,
                                augment=transform,
                                target_augment=target_transform)

    # train_sampler = torch.utils.data.distributed.DistributedSampler(train_set,
    #                         num_replicas=dist.get_world_size(), rank=dist.get_rank())
    train_loader = DataLoader(
        train_set,
        batch_size=args.batch_size,
        pin_memory=True,
        num_workers=args.workers,
        shuffle=False,
    )

    if args.train_with_eval:
        eval_transform = joint_augment.Compose([
            joint_augment.To_PIL_Image(),
            joint_augment.FixResize(256),  # divided by 32
            joint_augment.To_Tensor()
        ])
        evalImg_transform = standard_augment.Compose([
            # standard_augment.normalize([cfg.DATASET.MEAN], [cfg.DATASET.STD])],)
            standard_augment.normalize_meanstd()
        ])

        if cfg.DATASET.NAME == 'acdc':
            test_set = AcdcDataset(data_list=cfg.DATASET.TEST_LIST,
                                   joint_augment=eval_transform,
                                   augment=evalImg_transform)

        test_loader = DataLoader(
            test_set,
            batch_size=args.batch_size,
            pin_memory=True,
            num_workers=args.workers,
            shuffle=False,
        )
    else:
        test_loader = None

    return train_loader, test_loader
def transform(imgs):
    mean = 63.19523533061758
    std = 70.74166957523165
    trans = standard_augment.Compose([
        standard_augment.To_PIL_Image(),
        # joint_augment.RandomAffine(0,translate=(0.125, 0.125)),
        # joint_augment.RandomRotate((-180,180)),
        # joint_augment.FixResize(224),
        standard_augment.to_Tensor(),
        standard_augment.normalize([mean], [std]),
    ])
    return trans(imgs)
示例#3
0
def create_dataloader():
    eval_transform = joint_augment.Compose([
        joint_augment.To_PIL_Image(),
        joint_augment.FixResize(256),
        joint_augment.To_Tensor()
    ])
    evalImg_transform = standard_augment.Compose(
        [standard_augment.normalize([cfg.DATASET.MEAN], [cfg.DATASET.STD])])

    if cfg.DATASET.NAME == "acdc":
        test_set = AcdcDataset(cfg.DATASET.TEST_LIST,
                               df_used=True,
                               joint_augment=eval_transform,
                               augment=evalImg_transform)

    test_loader = DataLoader(test_set,
                             batch_size=1,
                             pin_memory=True,
                             num_workers=args.workers,
                             shuffle=False,
                             collate_fn=BatchCollator(size_divisible=32,
                                                      df_used=True))
    return test_loader, test_set
def create_dataloader_Insensee(do_elastic_transform=True,
                               alpha=(100., 350.),
                               sigma=(14., 17.),
                               do_rotation=True,
                               a_x=(0., 2 * np.pi),
                               a_y=(-0.000001, 0.00001),
                               a_z=(-0.000001, 0.00001),
                               do_scale=True,
                               scale_range=(0.7, 1.3)):

    transform = SpatialTransform((352, 352),
                                 list(np.array((352, 352)) // 2),
                                 do_elastic_transform,
                                 alpha,
                                 sigma,
                                 do_rotation,
                                 a_x,
                                 a_y,
                                 a_z,
                                 do_scale,
                                 scale_range,
                                 'constant',
                                 0,
                                 3,
                                 'constant',
                                 0,
                                 0,
                                 random_crop=False)

    train_set_Isensee = AcdcDataset_Isensee(data_list=cfg.DATASET.TRAIN_LIST,
                                            Isensee_augment=transform)

    train_loader_Isensee = DataLoader(train_set_Isensee,
                                      batch_size=args.batch_size,
                                      pin_memory=True,
                                      num_workers=1,
                                      shuffle=False)

    if args.train_with_eval:
        eval_transform = joint_augment.Compose([
            joint_augment.To_PIL_Image(),
            joint_augment.FixResize(352),  # divided by 32
            joint_augment.To_Tensor()
        ])
        evalImg_transform = standard_augment.Compose(
            [standard_augment.normalize_meanstd()])

        if cfg.DATASET.NAME == 'acdc':
            test_set = AcdcDataset(data_list=cfg.DATASET.TEST_LIST,
                                   joint_augment=eval_transform,
                                   augment=evalImg_transform)

        test_loader = DataLoader(
            test_set,
            batch_size=args.batch_size,
            pin_memory=True,
            num_workers=args.workers,
            shuffle=False,
        )
    else:
        test_loader = None

    return train_loader_Isensee, test_loader
                  for i in np.unique(lbls)]  # calculate every region's number
    largest_region = np.argmax(
        lbls_sizes[1:]) + 1  # from 1 because need excluding the background
    print('labls:', np.unique(lbls), 'largest_region:', largest_region)
    seg[lbls !=
        largest_region] = 0  # only allow one pred region,set others to zero
    return seg


eval_transform = joint_augment.Compose([
    joint_augment.To_PIL_Image(),
    joint_augment.FixResize(256),
    joint_augment.To_Tensor()
])

evalImg_transform = standard_augment.Compose(
    [standard_augment.normalize_meanstd()])

if cfg.DATASET.NAME == 'acdc':
    test_set = AcdcDataset_Upload(data_list=cfg.DATASET.TEST_UPLOAD,
                                  joint_augment=eval_transform,
                                  augment=evalImg_transform)

test_loader = DataLoader(test_set,
                         batch_size=1,
                         pin_memory=True,
                         num_workers=args.workers,
                         shuffle=False)

model = CleanU_Net()
nii_numpy_data = []
nii_numpy_lab = []
示例#6
0
def transform(imgs, cfg):
    trans = standard_augment.Compose([
        standard_augment.normalize([cfg.DATASET.MEAN], [cfg.DATASET.STD]),
    ])
    return trans(imgs)
示例#7
0
                  for i in np.unique(lbls)]  # calculate every region's number
    largest_region = np.argmax(
        lbls_sizes[1:]) + 1  # from 1 because need excluding the background
    seg[lbls !=
        largest_region] = 0  # only allow one pred region,set others to zero
    return seg


train_joint_transform = joint_augment.Compose([
    joint_augment.To_PIL_Image(),
    joint_augment.RandomAffine(0, translate=(0.125, 0.125)),
    joint_augment.RandomRotate((-180, 180)),
    joint_augment.FixResize(256)
])
transform = standard_augment.Compose(
    [standard_augment.to_Tensor(),
     standard_augment.normalize_meanstd()])
target_transform = standard_augment.Compose([standard_augment.to_Tensor()])

if cfg.DATASET.NAME == 'acdc':
    train_set = AcdcDataset(data_list=cfg.DATASET.TRAIN_LIST,
                            joint_augment=train_joint_transform,
                            augment=transform,
                            target_augment=target_transform)

train_loader = DataLoader(train_set,
                          batch_size=args.batch_size,
                          pin_memory=True,
                          num_workers=1,
                          shuffle=False)
eval_transform = joint_augment.Compose([
示例#8
0
def create_dataloader(logger):
    train_joint_transform = joint_augment.Compose([
        joint_augment.To_PIL_Image(),
        joint_augment.RandomAffine(0, translate=(0.125, 0.125)),
        joint_augment.RandomRotate((-180, 180)),
        joint_augment.FixResize(256)
    ])
    transform = standard_augment.Compose([
        standard_augment.to_Tensor(),
        standard_augment.normalize([cfg.DATASET.MEAN], [cfg.DATASET.STD])
    ])
    target_transform = standard_augment.Compose([standard_augment.to_Tensor()])

    if cfg.DATASET.NAME == 'acdc':
        train_set = AcdcDataset(data_list=cfg.DATASET.TRAIN_LIST,
                                df_used=cfg.DATASET.DF_USED,
                                df_norm=cfg.DATASET.DF_NORM,
                                boundary=cfg.DATASET.BOUNDARY,
                                joint_augment=train_joint_transform,
                                augment=transform,
                                target_augment=target_transform)

    train_sampler = torch.utils.data.distributed.DistributedSampler(
        train_set, num_replicas=dist.get_world_size(), rank=dist.get_rank())
    train_loader = DataLoader(train_set,
                              batch_size=args.batch_size,
                              pin_memory=True,
                              num_workers=args.workers,
                              shuffle=False,
                              sampler=train_sampler,
                              collate_fn=BatchCollator(
                                  size_divisible=32,
                                  df_used=cfg.DATASET.DF_USED,
                                  boundary=cfg.DATASET.BOUNDARY))

    if args.train_with_eval:
        eval_transform = joint_augment.Compose([
            joint_augment.To_PIL_Image(),
            joint_augment.FixResize(256),
            joint_augment.To_Tensor()
        ])
        evalImg_transform = standard_augment.Compose([
            standard_augment.normalize([cfg.DATASET.MEAN], [cfg.DATASET.STD])
        ])

        if cfg.DATASET.NAME == 'acdc':
            test_set = AcdcDataset(data_list=cfg.DATASET.TEST_LIST,
                                   df_used=cfg.DATASET.DF_USED,
                                   df_norm=cfg.DATASET.DF_NORM,
                                   boundary=cfg.DATASET.BOUNDARY,
                                   joint_augment=eval_transform,
                                   augment=evalImg_transform)

        test_sampler = torch.utils.data.distributed.DistributedSampler(
            test_set, num_replicas=dist.get_world_size(), rank=dist.get_rank())
        test_loader = DataLoader(test_set,
                                 batch_size=args.batch_size,
                                 pin_memory=True,
                                 num_workers=args.workers,
                                 shuffle=False,
                                 sampler=test_sampler,
                                 collate_fn=BatchCollator(
                                     size_divisible=32,
                                     df_used=cfg.DATASET.DF_USED,
                                     boundary=cfg.DATASET.BOUNDARY))
    else:
        test_loader = None

    return train_loader, test_loader