current_device = torch.cuda.current_device() print("Running on", torch.cuda.get_device_name(current_device)) else: print("Running on CPU") data_transforms = get_transforms( input_size=(args.size, args.size), image_mode=False ) train_dataset = get_datasets( name_list=["mydataset"], split_list=["train"], config_path=args.dataset_config, root=args.data, training=True, transforms=data_transforms['train'], read_clip=True, random_reverse_clip=True, clip_len=args.clip_len ) val_dataset = get_datasets( name_list="mydataset", split_list="val", config_path=args.dataset_config, root=args.data, training=True, transforms=data_transforms['val'], read_clip=True, random_reverse_clip=False, clip_len=args.clip_len
input_size=(args.size, args.size), image_mode=True ) # data_transformsWO = get_transformsWO( # input_size=(args.size, args.size), # image_mode=False # ) train_dataset = get_datasets( # name_list=["DAVIS2016", "FBMS", "VOS"], # name_list=["DAVIS2016"], #先只用DAVIS2016-test做测试 name_list=["DAVIS2016", "DAVSOD", "VOS"], # 上下得一起改 split_list=["train", "train", "train"], # name_list=["FBMS"], # split_list=["train"], config_path=args.dataset_config, root=args.data, training=True, transforms=data_transforms['train'], read_clip=True, random_reverse_clip=False, # 是否反转clip clip_len=args.clip_len ) val_dataset = get_datasets( name_list=["DAVIS2016"], split_list=["val"], config_path=args.dataset_config, root=args.data, training=True, transforms=data_transforms['val'],
current_device = torch.cuda.current_device() print("Running on", torch.cuda.get_device_name(current_device)) else: print("Running on CPU") data_transforms = get_transforms( input_size=(args.size, args.size), image_mode=False ) dataset = get_datasets( name_list=args.dataset, split_list=args.split, config_path=args.dataset_config, root=args.data, training=False, transforms=data_transforms['test'], read_clip=True, random_reverse_clip=False, label_interval=1, frame_between_label_num=0, clip_len=args.clip_len ) dataloader = data.DataLoader( dataset=dataset, batch_size=1, # only support 1 video clip num_workers=args.num_workers, shuffle=False ) model = VideoModel(output_stride=args.os)
if cuda: torch.backends.cudnn.benchmark = True current_device = torch.cuda.current_device() print("Running on", torch.cuda.get_device_name(current_device)) else: print("Running on CPU") data_transforms = get_transforms(input_size=(args.size, args.size), image_mode=False) train_dataset = get_datasets(name_list=["DAVIS2016", "FBMS", "VOS"], split_list=["train", "train", "train"], config_path=args.dataset_config, root=args.data, training=True, transforms=data_transforms['train'], read_clip=True, random_reverse_clip=True, label_interval=args.label_interval, clip_len=args.clip_len) val_dataset = get_datasets(name_list="VOS", split_list="val", config_path=args.dataset_config, root=args.data, training=True, transforms=data_transforms['val'], read_clip=True, random_reverse_clip=False, label_interval=args.label_interval, clip_len=args.clip_len)