示例#1
0
    def __init__(
        self,
        state,
        output_interval_days=4,
        run_mode="can-before",
        output_dir=None,
        jhu_dataset=None,
        cds_dataset=None,
        include_imputed=False,
    ):

        self.output_interval_days = output_interval_days
        self.state = state
        self.run_mode = RunMode(run_mode)
        self.include_imputed = include_imputed
        self.state_abbreviation = us.states.lookup(state).abbr
        self.population_data = FIPSPopulation.local().population()
        self.output_dir = output_dir

        self.jhu_local = jhu_dataset or JHUDataset.local()
        self.cds_dataset = cds_dataset or CDSDataset.local()

        self.county_timeseries = build_aggregate_county_data_frame(self.jhu_local, self.cds_dataset)
        self.county_timeseries["date"] = self.county_timeseries["date"].dt.normalize()

        self.state_timeseries = self.jhu_local.timeseries().state_data
        self.state_timeseries["date"] = self.state_timeseries["date"].dt.normalize()
        self.df_whitelist = load_data.load_whitelist()
        self.df_whitelist = self.df_whitelist[self.df_whitelist["inference_ok"] == True]
示例#2
0
def build_county_summary(min_date, country="USA", state=None, output_dir=OUTPUT_DIR):
    """Builds county summary json files."""
    beds_data = DHBeds.local().beds()
    population_data = FIPSPopulation.local().population()
    timeseries = JHUDataset.local().timeseries()
    timeseries = timeseries.get_subset(
        AggregationLevel.COUNTY, after=min_date, country=country, state=state
    )

    output_dir = pathlib.Path(output_dir) / "county_summaries"
    _logger.info(f"Outputting to {output_dir}")
    if not output_dir.exists():
        _logger.info(f"{output_dir} does not exist, creating")
        output_dir.mkdir(parents=True)

    counties_by_state = defaultdict(list)
    for country, state, county, fips in timeseries.county_keys():
        counties_by_state[state].append((county, fips))

    for state, counties in counties_by_state.items():
        data = {"counties_with_data": []}
        for county, fips in counties:
            cases = timeseries.get_data(state=state, country=country, fips=fips)
            beds = beds_data.get_county_level(state, fips=fips)
            population = population_data.get_county_level(country, state, fips=fips)
            if population and beds and sum(cases.cases):
                data["counties_with_data"].append(fips)

        output_path = output_dir / f"{state}.summary.json"
        output_path.write_text(json.dumps(data, indent=2))
示例#3
0
def run_state_level_forecast(
    min_date, max_date, country="USA", state=None, output_dir=OUTPUT_DIR
):
    # DH Beds dataset does not have all counties, so using the legacy state
    # level bed data.
    legacy_dataset = LegacyJHUDataset(min_date)
    population_data = FIPSPopulation.local().population()
    timeseries = JHUDataset.local().timeseries()
    timeseries = timeseries.get_subset(
        AggregationLevel.STATE, after=min_date, country=country, state=state
    )
    output_dir = pathlib.Path(OUTPUT_DIR)
    if output_dir.exists() and not state:
        backup = output_dir.name + "." + str(int(time.time()))
        output_dir.rename(output_dir.parent / backup)

    output_dir.mkdir(parents=True, exist_ok=True)

    pool = get_pool()
    for state in timeseries.states:
        args = (
            country,
            state,
            timeseries,
            legacy_dataset,
            population_data,
            min_date,
            max_date,
            output_dir,
        )
        pool.apply_async(forecast_each_state, args=args)

    pool.close()
    pool.join()
    def __init__(
        self,
        state,
        output_interval_days=4,
        run_mode="can-before",
        output_dir=None,
        jhu_dataset=None,
        cds_dataset=None,
        include_imputed=False,
    ):

        self.output_interval_days = output_interval_days
        self.state = state
        self.run_mode = RunMode(run_mode)
        self.include_imputed = include_imputed
        self.state_abbreviation = us.states.lookup(state).abbr
        self.population_data = FIPSPopulation.local().population()
        self.output_dir = output_dir

        self.jhu_local = jhu_dataset or JHUDataset.local()
        self.cds_dataset = cds_dataset or CDSDataset.local()

        self.county_timeseries = build_aggregate_county_data_frame(
            self.jhu_local, self.cds_dataset)
        self.county_timeseries["date"] = self.county_timeseries[
            "date"].dt.normalize()

        state_timeseries = self.jhu_local.timeseries().get_subset(
            AggregationLevel.STATE)
        self.state_timeseries = state_timeseries.data["date"].dt.normalize()
示例#5
0
def run_latest(version: data_version.DataVersion, output: pathlib.Path):
    """Get latest case values from JHU dataset."""
    output.mkdir(exist_ok=True)
    timeseries = JHUDataset.local().timeseries()
    state_summaries = dataset_export.latest_case_summaries_by_state(timeseries)

    for state, state_summary in state_summaries:
        output_file = output / f"{state}.summary.json"
        with output_file.open("w") as f:
            _logger.info(f"Writing latest data for {state}")
            json.dump(state_summary, f)

    version.write_file("case_summary", output)
示例#6
0
def run_latest(version: data_version.DataVersion, output: pathlib.Path):
    """Get latest case values from JHU dataset."""
    output.mkdir(exist_ok=True)
    timeseries = JHUDataset.local().timeseries()
    state_summaries = dataset_export.latest_case_summaries_by_state(timeseries)

    for state_summary in state_summaries:
        state = state_summary.state
        output_file = output / f"{state}.summary.json"
        _logger.info(f"Writing latest data for {state} to {output_file}")
        output_file.write_text(state_summary.json(indent=2))

    version.write_file("case_summary", output)
def run_county_level_forecast(
    min_date: datetime.datetime,
    max_date: datetime.datetime,
    output_dir: pathlib.Path,
    country: str = "USA",
    state: str = None,
):
    beds_data = DHBeds.local().beds()
    population_data = FIPSPopulation.local().population()
    timeseries = JHUDataset.local().timeseries()
    timeseries = timeseries.get_subset(AggregationLevel.COUNTY,
                                       after=min_date,
                                       country=country,
                                       state=state)

    _logger.info(f"Outputting to {output_dir}")
    output_dir.mkdir(parents=True, exist_ok=True)

    counties_by_state = defaultdict(list)
    county_keys = timeseries.county_keys()
    for country, state, county, fips in county_keys:
        counties_by_state[state].append((county, fips))

    pool = get_pool()
    for state, counties in counties_by_state.items():
        _logger.info(f"Running county models for {state}")
        for county, fips in counties:
            args = (
                min_date,
                max_date,
                country,
                state,
                county,
                fips,
                timeseries,
                beds_data,
                population_data,
                output_dir,
            )

            pool.apply_async(
                forecast_each_county,
                args,
                callback=_result_callback_wrapper(
                    f"{county}, {state}: {fips}"),
            )

    pool.close()
    pool.join()
示例#8
0
def run_county_level_forecast(min_date,
                              max_date,
                              country="USA",
                              state=None,
                              output_dir=OUTPUT_DIR):
    beds_data = DHBeds.local().beds()
    population_data = FIPSPopulation.local().population()
    timeseries = JHUDataset.local().timeseries()
    timeseries = timeseries.get_subset(AggregationLevel.COUNTY,
                                       after=min_date,
                                       country=country,
                                       state=state)

    output_dir = pathlib.Path(output_dir) / "county"
    _logger.info(f"Outputting to {output_dir}")
    # Dont want to replace when just running the states
    if output_dir.exists() and not state:
        backup = output_dir.name + "." + str(int(time.time()))
        output_dir.rename(output_dir.parent / backup)

    output_dir.mkdir(parents=True, exist_ok=True)

    counties_by_state = defaultdict(list)
    county_keys = timeseries.county_keys()
    for country, state, county, fips in county_keys:
        counties_by_state[state].append((county, fips))

    pool = get_pool()
    for state, counties in counties_by_state.items():
        _logger.info(f"Running county models for {state}")
        for county, fips in counties:
            args = (
                min_date,
                max_date,
                country,
                state,
                county,
                fips,
                timeseries,
                beds_data,
                population_data,
                output_dir,
            )
            # forecast_each_county(*args)
            pool.apply_async(forecast_each_county, args=args)

    pool.close()
    pool.join()
示例#9
0
def run_latest(deploy=False):
    """Get latest case values from JHU dataset."""
    output_dir = pathlib.Path(build_params.OUTPUT_DIR)
    if deploy:
        output_dir = WEB_DEPLOY_PATH

    output_folder = output_dir / "case_summary"
    output_folder.mkdir(exist_ok=True)
    timeseries = JHUDataset.local().timeseries()
    state_summaries = dataset_export.latest_case_summaries_by_state(timeseries)

    for state, state_summary in state_summaries:
        output_file = output_folder / f"{state}.summary.json"
        with output_file.open("w") as f:
            _logger.info(f"Writing latest data for {state}")
            json.dump(state_summary, f)
def run_state_level_forecast(
    min_date,
    max_date,
    output_dir,
    country="USA",
    state=None,
):
    # DH Beds dataset does not have all counties, so using the legacy state
    # level bed data.
    beds_data = DHBeds.local().beds()
    population_data = FIPSPopulation.local().population()
    timeseries = JHUDataset.local().timeseries()
    timeseries = timeseries.get_subset(AggregationLevel.STATE,
                                       after=min_date,
                                       country=country,
                                       state=state)
    output_dir = pathlib.Path(output_dir)
    output_dir.mkdir(parents=True, exist_ok=True)

    pool = get_pool()
    for state in timeseries.states:
        args = (
            country,
            state,
            timeseries,
            beds_data,
            population_data,
            min_date,
            max_date,
            output_dir,
        )
        pool.apply_async(
            forecast_each_state,
            args,
            callback=_result_callback_wrapper(f"{state}, {country}"),
        )

    pool.close()
    pool.join()
示例#11
0
    def __init__(self, fips, n_years=.5, n_samples=250,
                 suppression_policy=(0.35, 0.5, 0.75, 1),
                 skip_plots=False,
                 output_percentiles=(5, 25, 32, 50, 75, 68, 95),
                 generate_report=True,
                 run_mode=RunMode.DEFAULT,
                 min_hospitalization_threshold=5,
                 hospitalization_to_confirmed_case_ratio=1 / 4,
                 covid_timeseries=None):

        self.fips = fips
        self.agg_level = AggregationLevel.COUNTY if len(fips) == 5 else AggregationLevel.STATE

        self.t_list = np.linspace(0, int(365 * n_years), int(365 * n_years) + 1)
        self.skip_plots = skip_plots
        self.run_mode = RunMode(run_mode)
        self.hospitalizations_for_state = None
        self.min_hospitalization_threshold = min_hospitalization_threshold
        self.hospitalization_to_confirmed_case_ratio = hospitalization_to_confirmed_case_ratio

        if self.agg_level is AggregationLevel.COUNTY:
            self.county_metadata = load_data.load_county_metadata_by_fips(fips)
            self.state_abbr = us.states.lookup(self.county_metadata['state']).abbr
            self.state_name = us.states.lookup(self.county_metadata['state']).name

            self.output_file_report = get_run_artifact_path(self.fips, RunArtifact.ENSEMBLE_REPORT)
            self.output_file_data = get_run_artifact_path(self.fips, RunArtifact.ENSEMBLE_RESULT)

        else:
            self.state_abbr = us.states.lookup(self.fips).abbr
            self.state_name = us.states.lookup(self.fips).name

            self.output_file_report = None
            self.output_file_data = get_run_artifact_path(self.fips, RunArtifact.ENSEMBLE_RESULT)

        county_fips = None if self.agg_level is AggregationLevel.STATE else self.fips

        if not covid_timeseries:
            covid_timeseries = JHUDataset.local().timeseries()
        else:
            covid_timeseries = covid_timeseries.timeseries()

        self.covid_data = covid_timeseries\
            .get_subset(self.agg_level, country='USA', state=self.state_abbr) \
            .get_data(country='USA', state=self.state_abbr, fips=county_fips) \
            .sort_values('date')

        os.makedirs(os.path.dirname(self.output_file_data), exist_ok=True)
        if self.output_file_report:
            os.makedirs(os.path.dirname(self.output_file_report), exist_ok=True)

        self.output_percentiles = output_percentiles
        self.n_samples = n_samples
        self.n_years = n_years
        # TODO: Will be soon replaced with loaders for all the inferred params.
        # self.t0 = fit_results.load_t0(fips)
        self.date_generated = datetime.datetime.utcnow().isoformat()
        self.suppression_policy = suppression_policy
        self.summary = copy.deepcopy(self.__dict__)
        self.summary.pop('t_list')
        self.generate_report = generate_report

        self.suppression_policies = None
        self.override_params = dict()
        self.init_run_mode()

        self.all_outputs = {}