示例#1
0
    def test_process_minutiae(self):
        # Tests minutiae creation output.

        path = '../../data/Fingerprints - Set A/101_1.tif'
        img = load_image(path, True)
        img = enhance_image(img, padding=5)

        minutiae = process_minutiae(img)

        self.assertIsNotNone(minutiae, msg='ERROR: Wrong output.')
示例#2
0
    def test_enhance_image(self):
        # Tests image enhancing output and data loss.

        # Revert gray colour levels. Match scale with the raw image for comparison.
        path = '../../data/Fingerprints - Set A/101_1.tif'

        # Image loading
        img = load_image(path, True)

        img = enhance_image(img, padding=5)
示例#3
0
    def trainData(self):
        """
        Loads model on the given dataset.

        """

        start = time.time()
        print(f'INFO: Loading model features. Model: {self.model.lower()}')

        if self.model.lower() == 'tree':
            for i in range(len(self.images)):
                # Extract minutiae.
                self.images[i].image_enhanced = enhance_image(
                    self.images[i].image_raw, skeletonise=True)
                minutiae = process_minutiae(self.images[i].image_enhanced)

                # Confirmed point matching.
                self.images[i].profile = generate_tuple_profile(minutiae)

                # Rewriting to the loaded data.
                self.images[i].minutiae = minutiae

        elif self.model.lower() == 'orb':
            # Base data.
            print('INFO: Training skipped.')

        elif self.model.lower() == 'bf':
            for i in range(len(self.images)):
                # BFMatcher descriptors generation.
                self.images[i].image_enhanced = enhance_image(
                    self.images[i].image_raw, skeletonise=False)

                points, descriptors = edge_processing(
                    self.images[i].image_enhanced, threshold=self.threshold)

                # points, descriptors = minutiae_points(self.images[i].image_enhanced)
                self.images[i].descriptors = descriptors

        print(
            f'INFO: Training completed in {round(time.time() - start, 2)} sec')
示例#4
0
from libs.basics import load_image, display_image
from libs.minutiae import process_minutiae, generate_tuple_profile
from libs.enhancing import enhance_image
from libs.matching import match_tuples, build_edges, edge_matching

import unittest

path_base = '../../data/Fingerprints - Set A/101_2.tif'
path_test = '../../data/Fingerprints - Set A/101_2.tif'

img_base = load_image(path_base, True)
img_base = enhance_image(img_base, padding=5)

img_test = load_image(path_test, True)
img_test = enhance_image(img_test, padding=5)

# Confirmed point matching.
TUPLE_BASE = generate_tuple_profile(process_minutiae(img_base))
TUPLE_TEST = generate_tuple_profile(process_minutiae(img_test))


class TestMatching(unittest.TestCase):
    def test_match_tuples(self):
        # Tests minutiae creation output.

        ccpb_base, ccpb_test = match_tuples(TUPLE_BASE, TUPLE_TEST)

        print('---')

    def test_edge_matching(self):
示例#5
0
    def matchFingerprint(self,
                         image: np.array,
                         verbose: bool = False,
                         match_th: int = 33):
        """
        The given image is compared against the loaded templates.
        A similarity score is computed and used to determine the most likely match, if any.

        """

        if self.model.lower() == 'bf':
            # BFMatcher and MES scorings.
            scores = {}

            # Returns score, aims to minimise them for computing the best match.
            # Test descriptors.
            img = enhance_image(image, skeletonise=False)
            points, descriptors = edge_processing(img,
                                                  threshold=self.threshold)

            for i in range(len(self.images)):
                # Matching.
                try:
                    matches = match_edge_descriptors(
                        self.images[i].descriptors, descriptors)
                except AttributeError:
                    raise Exception(
                        'ERROR: Model not trained - run trainData first.')

                # Calculate score
                score = sum([match.distance for match in matches])
                # Using mes (mean edge score) = sum(match distance) / len(matches)
                if len(matches) > 0:
                    mes = score / len(matches)
                    scores[self.images[i].img_id] = mes

            scores = sorted(scores.items(), key=operator.itemgetter(1))

            # Display most likely match
            results = [{
                'img_id': s[0],
                'score': round(s[1], 2),
                'match': s[1] < match_th
            } for s in scores]

            matches = [m for m in results if m['match']]
            if len(matches) == 0:
                print(
                    f'No match found. Most similar fingerprint is {results[:5]}'
                )
            else:
                print(f'INFO: Matches found, score: {matches}')

            return scores

        elif self.model.lower() == 'orb':
            # Basic SIFT based ORB matcher.
            for i in self.images:
                sift_match(i.image_raw, image)

        elif self.model.lower() == 'tree':

            img_test = enhance_image(image, skeletonise=True)

            minutiae_test = process_minutiae(img_test)
            # Confirmed point matching.
            img_profile = generate_tuple_profile(minutiae_test)

            for i in range(len(self.images)):
                # Matching.
                common_points_base, common_points_test = match_tuples(
                    self.images[i].profile, img_profile)

                if evaluate(common_points_base, self.images[i].minutiae,
                            minutiae_test):
                    print(f'Match with {self.images[i].img_id}')
                else:
                    print(f'Not a match with {self.images[i].img_id}')

        elif self.model == 'cnn':
            pass

        else:
            print('INFO: Not implemented yet.')