env, "networks/settlers_network/parameters.json", 0.2, 0.1) #0.2, 0.1 #agent = libs_agent.agent.Agent(env) #process training training_iterations = 500000 for iteration in range(0, training_iterations): agent.main() #print training progress %, ane score, every 100th iterations if iteration % 100 == 0: env._print() print(iteration * 100.0 / training_iterations, env.get_score()) agent.save("networks/settlers_network/trained/") agent.load("networks/settlers_network/trained/") #reset score env.reset_score() #choose only the best action agent.run_best_enable() #process testing iterations testing_iterations = 10000 for iteration in range(0, testing_iterations): agent.main() print("move=", env.get_move(), " score=", env.get_score(), " moves to win=", env.get_moves_to_win()) while True:
#print environment info env.print_info() #init DQN agent gamma = 0.99 replay_buffer_size = 16384 epsilon_training = 1.0 epsilon_testing = 0.1 epsilon_decay = 0.99999 #init DQN agent agent = libs.libs_agent.agent_dqn.DQNAgent(env, network_path + "network_config.json", gamma, replay_buffer_size, epsilon_training, epsilon_testing, epsilon_decay) ''' agent.load(network_path + "trained/") agent.run_best_enable() while True: agent.main() env._print() ''' training_progress_log = rysy.Log(network_path + "progress_training.log") testing_progress_log = rysy.Log(network_path + "progress_testing.log") #process training total_games_to_play = 20000 while env.get_games_count() < total_games_to_play:
#init DQN agent agent = libs.libs_agent.agent_dqn.DQNAgent( env, "networks/arkanoid_network_b/parameters.json", 0.2, 0.02, 0.99999) #process training training_iterations = 250000 for iteration in range(0, training_iterations): agent.main() #print training progress %, ane score, every 100th iterations if iteration % 100 == 0: env._print() agent.save("networks/arkanoid_network_b/trained/") agent.load("networks/arkanoid_network_b/trained/") #reset score env.reset_score() #choose only the best action agent.run_best_enable() #process testing iterations testing_iterations = 10000 for iteration in range(0, testing_iterations): agent.main() env._print() while True: agent.main()