def eval(num_imgs, args):

    txt_name = '{}.txt'.format(cfgs.VERSION)
    if not args.show_box:
        if not os.path.exists(txt_name):
            fw = open(txt_name, 'w')
            fw.close()

        fr = open(txt_name, 'r')
        img_filter = fr.readlines()
        print('****************************' * 3)
        print('Already tested imgs:', img_filter)
        print('****************************' * 3)
        fr.close()

        test_imgname_list = [
            os.path.join(args.test_dir, img_name)
            for img_name in os.listdir(args.test_dir)
            if img_name.endswith(('.jpg', '.png', '.jpeg', '.tif',
                                  '.tiff')) and (img_name +
                                                 '\n' not in img_filter)
        ]
    else:
        test_imgname_list = [
            os.path.join(args.test_dir, img_name)
            for img_name in os.listdir(args.test_dir)
            if img_name.endswith(('.jpg', '.png', '.jpeg', '.tif', '.tiff'))
        ]

    assert len(test_imgname_list) != 0, 'test_dir has no imgs there.' \
                                        ' Note that, we only support img format of (.jpg, .png, and .tiff) '

    if num_imgs == np.inf:
        real_test_img_list = test_imgname_list
    else:
        real_test_img_list = test_imgname_list[:num_imgs]

    r3det_plusplus = build_whole_network_r3det_plusplus.DetectionNetwork(
        base_network_name=cfgs.NET_NAME, is_training=False)
    test_dota(det_net=r3det_plusplus,
              real_test_img_list=real_test_img_list,
              args=args,
              txt_name=txt_name)

    if not args.show_box:
        os.remove(txt_name)
示例#2
0
def train():

    with tf.Graph().as_default(), tf.device('/cpu:0'):

        num_gpu = len(cfgs.GPU_GROUP.strip().split(','))
        global_step = slim.get_or_create_global_step()
        lr = warmup_lr(cfgs.LR, global_step, cfgs.WARM_SETP, num_gpu)
        tf.summary.scalar('lr', lr)

        with tf.name_scope('get_batch'):
            if cfgs.IMAGE_PYRAMID:
                shortside_len_list = tf.constant(cfgs.IMG_SHORT_SIDE_LEN)
                shortside_len = tf.random_shuffle(shortside_len_list)[0]

            else:
                shortside_len = cfgs.IMG_SHORT_SIDE_LEN

            img_name_batch, img_batch, gtboxes_and_label_batch, num_objects_batch, img_h_batch, img_w_batch = \
                next_batch(dataset_name=cfgs.DATASET_NAME,
                           batch_size=cfgs.BATCH_SIZE * num_gpu,
                           shortside_len=shortside_len,
                           is_training=True)

        optimizer = tf.train.MomentumOptimizer(lr, momentum=cfgs.MOMENTUM)
        retinanet = build_whole_network_r3det_plusplus.DetectionNetwork(
            base_network_name=cfgs.NET_NAME, is_training=True)

        # data processing
        inputs_list = []
        for i in range(num_gpu):
            img = tf.expand_dims(img_batch[i], axis=0)

            if cfgs.NET_NAME in [
                    'resnet152_v1d', 'resnet101_v1d', 'resnet50_v1d'
            ]:
                img = img / tf.constant([cfgs.PIXEL_STD])

            gtboxes_and_label_r = tf.py_func(backward_convert,
                                             inp=[gtboxes_and_label_batch[i]],
                                             Tout=tf.float32)
            gtboxes_and_label_r = tf.reshape(gtboxes_and_label_r, [-1, 6])

            gtboxes_and_label_h = get_horizen_minAreaRectangle(
                gtboxes_and_label_batch[i])
            gtboxes_and_label_h = tf.reshape(gtboxes_and_label_h, [-1, 5])

            num_objects = num_objects_batch[i]
            num_objects = tf.cast(tf.reshape(num_objects, [
                -1,
            ]), tf.float32)

            img_h = img_h_batch[i]
            img_w = img_w_batch[i]

            inputs_list.append([
                img, gtboxes_and_label_h, gtboxes_and_label_r, num_objects,
                img_h, img_w
            ])

        tower_grads = []
        biases_regularizer = tf.no_regularizer
        weights_regularizer = tf.contrib.layers.l2_regularizer(
            cfgs.WEIGHT_DECAY)

        total_loss_dict = {
            'cls_loss': tf.constant(0., tf.float32),
            'reg_loss': tf.constant(0., tf.float32),
            'refine_cls_loss': tf.constant(0., tf.float32),
            'refine_reg_loss': tf.constant(0., tf.float32),
            'refine_cls_loss_stage3': tf.constant(0., tf.float32),
            'refine_reg_loss_stage3': tf.constant(0., tf.float32),
            'total_losses': tf.constant(0., tf.float32),
        }

        if cfgs.USE_SUPERVISED_MASK:
            total_loss_dict['mask_loss'] = tf.constant(0., tf.float32)

        with tf.variable_scope(tf.get_variable_scope()):
            for i in range(num_gpu):
                with tf.device('/gpu:%d' % i):
                    with tf.name_scope('tower_%d' % i):
                        with slim.arg_scope(
                            [slim.model_variable, slim.variable],
                                device='/device:CPU:0'):
                            with slim.arg_scope(
                                [
                                    slim.conv2d, slim.conv2d_in_plane,
                                    slim.conv2d_transpose,
                                    slim.separable_conv2d, slim.fully_connected
                                ],
                                    weights_regularizer=weights_regularizer,
                                    biases_regularizer=biases_regularizer,
                                    biases_initializer=tf.constant_initializer(
                                        0.0)):

                                gtboxes_and_label_h, gtboxes_and_label_r = tf.py_func(
                                    get_gtboxes_and_label,
                                    inp=[
                                        inputs_list[i][1], inputs_list[i][2],
                                        inputs_list[i][3]
                                    ],
                                    Tout=[tf.float32, tf.float32])
                                gtboxes_and_label_h = tf.reshape(
                                    gtboxes_and_label_h, [-1, 5])
                                gtboxes_and_label_r = tf.reshape(
                                    gtboxes_and_label_r, [-1, 6])

                                img = inputs_list[i][0]
                                img_shape = inputs_list[i][-2:]
                                img = tf.image.crop_to_bounding_box(
                                    image=img,
                                    offset_height=0,
                                    offset_width=0,
                                    target_height=tf.cast(
                                        img_shape[0], tf.int32),
                                    target_width=tf.cast(
                                        img_shape[1], tf.int32))

                                outputs = retinanet.build_whole_detection_network(
                                    input_img_batch=img,
                                    gtboxes_batch_h=gtboxes_and_label_h,
                                    gtboxes_batch_r=gtboxes_and_label_r,
                                    gpu_id=i)
                                gtboxes_in_img_h = draw_boxes_with_categories(
                                    img_batch=img,
                                    boxes=gtboxes_and_label_h[:, :-1],
                                    labels=gtboxes_and_label_h[:, -1],
                                    method=0)
                                gtboxes_in_img_r = draw_boxes_with_categories(
                                    img_batch=img,
                                    boxes=gtboxes_and_label_r[:, :-1],
                                    labels=gtboxes_and_label_r[:, -1],
                                    method=1)
                                tf.summary.image(
                                    'Compare/gtboxes_h_gpu:%d' % i,
                                    gtboxes_in_img_h)
                                tf.summary.image(
                                    'Compare/gtboxes_r_gpu:%d' % i,
                                    gtboxes_in_img_r)

                                if cfgs.ADD_BOX_IN_TENSORBOARD:
                                    detections_in_img = draw_boxes_with_categories_and_scores(
                                        img_batch=img,
                                        boxes=outputs[0],
                                        scores=outputs[1],
                                        labels=outputs[2],
                                        method=1)
                                    tf.summary.image(
                                        'Compare/final_detection_gpu:%d' % i,
                                        detections_in_img)

                                loss_dict = outputs[-1]

                                total_losses = 0.0
                                for k in loss_dict.keys():
                                    total_losses += loss_dict[k]
                                    total_loss_dict[
                                        k] += loss_dict[k] / num_gpu

                                total_losses = total_losses / num_gpu
                                total_loss_dict['total_losses'] += total_losses

                                if i == num_gpu - 1:
                                    regularization_losses = tf.get_collection(
                                        tf.GraphKeys.REGULARIZATION_LOSSES)
                                    # weight_decay_loss = tf.add_n(slim.losses.get_regularization_losses())
                                    total_losses = total_losses + tf.add_n(
                                        regularization_losses)

                        tf.get_variable_scope().reuse_variables()
                        grads = optimizer.compute_gradients(total_losses)
                        if cfgs.GRADIENT_CLIPPING_BY_NORM is not None:
                            grads = slim.learning.clip_gradient_norms(
                                grads, cfgs.GRADIENT_CLIPPING_BY_NORM)
                        tower_grads.append(grads)

        for k in total_loss_dict.keys():
            tf.summary.scalar('{}/{}'.format(k.split('_')[0], k),
                              total_loss_dict[k])

        if len(tower_grads) > 1:
            grads = sum_gradients(tower_grads)
        else:
            grads = tower_grads[0]

        if cfgs.MUTILPY_BIAS_GRADIENT is not None:
            final_gvs = []
            with tf.variable_scope('Gradient_Mult'):
                for grad, var in grads:
                    scale = 1.
                    if '/biases:' in var.name:
                        scale *= cfgs.MUTILPY_BIAS_GRADIENT
                    if 'conv_new' in var.name:
                        scale *= 3.
                    if not np.allclose(scale, 1.0):
                        grad = tf.multiply(grad, scale)

                    final_gvs.append((grad, var))
            apply_gradient_op = optimizer.apply_gradients(
                final_gvs, global_step=global_step)
        else:
            apply_gradient_op = optimizer.apply_gradients(
                grads, global_step=global_step)

        variable_averages = tf.train.ExponentialMovingAverage(
            0.9999, global_step)
        variables_averages_op = variable_averages.apply(
            tf.trainable_variables())

        train_op = tf.group(apply_gradient_op, variables_averages_op)
        # train_op = optimizer.apply_gradients(final_gvs, global_step=global_step)
        summary_op = tf.summary.merge_all()

        restorer, restore_ckpt = retinanet.get_restorer()
        saver = tf.train.Saver(max_to_keep=5)

        init_op = tf.group(tf.global_variables_initializer(),
                           tf.local_variables_initializer())

        tfconfig = tf.ConfigProto(allow_soft_placement=True,
                                  log_device_placement=False)
        tfconfig.gpu_options.allow_growth = True
        with tf.Session(config=tfconfig) as sess:
            sess.run(init_op)

            # sess.run(tf.initialize_all_variables())
            coord = tf.train.Coordinator()
            threads = tf.train.start_queue_runners(coord=coord, sess=sess)

            summary_path = os.path.join(cfgs.SUMMARY_PATH, cfgs.VERSION)
            tools.mkdir(summary_path)
            summary_writer = tf.summary.FileWriter(summary_path,
                                                   graph=sess.graph)

            if not restorer is None:
                restorer.restore(sess, restore_ckpt)
                print('restore model')

            for step in range(cfgs.MAX_ITERATION // num_gpu):
                training_time = time.strftime('%Y-%m-%d %H:%M:%S',
                                              time.localtime(time.time()))

                if step % cfgs.SHOW_TRAIN_INFO_INTE != 0 and step % cfgs.SMRY_ITER != 0:
                    _, global_stepnp = sess.run([train_op, global_step])

                else:
                    if step % cfgs.SHOW_TRAIN_INFO_INTE == 0 and step % cfgs.SMRY_ITER != 0:
                        start = time.time()
                        _, global_stepnp, total_loss_dict_ = \
                            sess.run([train_op, global_step, total_loss_dict])

                        end = time.time()

                        print('***' * 20)
                        print("""%s: global_step:%d  current_step:%d""" %
                              (training_time,
                               (global_stepnp - 1) * num_gpu, step * num_gpu))
                        print("""per_cost_time:%.3fs""" %
                              ((end - start) / num_gpu))
                        loss_str = ''
                        for k in total_loss_dict_.keys():
                            loss_str += '%s:%.3f\n' % (k, total_loss_dict_[k])
                        print(loss_str)

                        if np.isnan(total_loss_dict_['total_losses']):
                            sys.exit(0)

                    else:
                        if step % cfgs.SMRY_ITER == 0:
                            _, global_stepnp, summary_str = sess.run(
                                [train_op, global_step, summary_op])
                            summary_writer.add_summary(
                                summary_str, (global_stepnp - 1) * num_gpu)
                            summary_writer.flush()

                if (step > 0 and step % (cfgs.SAVE_WEIGHTS_INTE // num_gpu)
                        == 0) or (step >= cfgs.MAX_ITERATION // num_gpu - 1):

                    save_dir = os.path.join(cfgs.TRAINED_CKPT, cfgs.VERSION)
                    if not os.path.exists(save_dir):
                        os.mkdir(save_dir)

                    save_ckpt = os.path.join(
                        save_dir, '{}_'.format(cfgs.DATASET_NAME) + str(
                            (global_stepnp - 1) * num_gpu) + 'model.ckpt')
                    saver.save(sess, save_ckpt)
                    print(' weights had been saved')

            coord.request_stop()
            coord.join(threads)