def train(args, run_opts):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Set some variables.

    # note, feat_dim gets set to 0 if args.feat_dir is unset (None).
    feat_dim = common_lib.get_feat_dim(args.feat_dir)
    ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)
    ivector_id = common_lib.get_ivector_extractor_id(args.online_ivector_dir)

    config_dir = '{0}/configs'.format(args.dir)
    var_file = '{0}/vars'.format(config_dir)

    variables = common_train_lib.parse_generic_config_vars_file(var_file)

    # Set some variables.
    try:
        model_left_context = variables['model_left_context']
        model_right_context = variables['model_right_context']

    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    left_context = model_left_context
    right_context = model_right_context

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.
    if (args.stage <= -5) and os.path.exists(args.dir +
                                             "/configs/init.config"):
        logger.info("Initializing the network for computing the LDA stats")
        common_lib.execute_command("""{command} {dir}/log/nnet_init.log \
                    nnet3-init --srand=-2 {dir}/configs/init.config \
                    {dir}/init.raw""".format(command=run_opts.command,
                                             dir=args.dir))

    default_egs_dir = '{0}/egs'.format(args.dir)
    if (args.stage <= -4) and args.egs_dir is None:
        if args.targets_scp is None or args.feat_dir is None:
            raise Exception(
                "If you don't supply the --egs-dir option, the "
                "--targets-scp and --feat-dir options are required.")

        logger.info("Generating egs")

        if args.use_dense_targets:
            target_type = "dense"
            try:
                num_targets = int(variables['num_targets'])
                if (common_lib.get_feat_dim_from_scp(args.targets_scp) !=
                        num_targets):
                    raise Exception("Mismatch between num-targets provided to "
                                    "script vs configs")
            except KeyError as e:
                num_targets = -1
        else:
            target_type = "sparse"
            try:
                num_targets = int(variables['num_targets'])
            except KeyError as e:
                raise Exception("KeyError {0}: Variables need to be defined "
                                "in {1}".format(str(e), '{0}/configs'.format(
                                    args.dir)))

        train_lib.raw_model.generate_egs_using_targets(
            data=args.feat_dir,
            targets_scp=args.targets_scp,
            egs_dir=default_egs_dir,
            left_context=left_context,
            right_context=right_context,
            run_opts=run_opts,
            frames_per_eg_str=str(args.frames_per_eg),
            srand=args.srand,
            egs_opts=args.egs_opts,
            cmvn_opts=args.cmvn_opts,
            online_ivector_dir=args.online_ivector_dir,
            samples_per_iter=args.samples_per_iter,
            transform_dir=args.transform_dir,
            stage=args.egs_stage,
            target_type=target_type,
            num_targets=num_targets)

    if args.egs_dir is None:
        egs_dir = default_egs_dir
    else:
        egs_dir = args.egs_dir

    [egs_left_context, egs_right_context, frames_per_eg_str,
     num_archives] = (common_train_lib.verify_egs_dir(egs_dir, feat_dim,
                                                      ivector_dim, ivector_id,
                                                      left_context,
                                                      right_context))
    assert str(args.frames_per_eg) == frames_per_eg_str

    if args.num_jobs_final > num_archives:
        raise Exception('num_jobs_final cannot exceed the number of archives '
                        'in the egs directory')

    # copy the properties of the egs to dir for
    # use during decoding
    common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)

    if args.stage <= -3 and os.path.exists(args.dir + "/configs/init.config"):
        logger.info('Computing the preconditioning matrix for input features')

        train_lib.common.compute_preconditioning_matrix(
            args.dir,
            egs_dir,
            num_archives,
            run_opts,
            max_lda_jobs=args.max_lda_jobs,
            rand_prune=args.rand_prune)

    if args.stage <= -1:
        logger.info("Preparing the initial network.")
        common_train_lib.prepare_initial_network(args.dir, run_opts)

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_expanded = num_archives * args.frames_per_eg
    num_archives_to_process = int(args.num_epochs * num_archives_expanded)
    num_archives_processed = 0
    num_iters = ((num_archives_to_process * 2) /
                 (args.num_jobs_initial + args.num_jobs_final))

    # If do_final_combination is True, compute the set of models_to_combine.
    # Otherwise, models_to_combine will be none.
    if args.do_final_combination:
        models_to_combine = common_train_lib.get_model_combine_iters(
            num_iters, args.num_epochs, num_archives_expanded,
            args.max_models_combine, args.num_jobs_final)
    else:
        models_to_combine = None

    if os.path.exists('{0}/valid_diagnostic.scp'.format(egs_dir)):
        if os.path.exists('{0}/valid_diagnostic.egs'.format(egs_dir)):
            raise Exception('both {0}/valid_diagnostic.egs and '
                            '{0}/valid_diagnostic.scp exist.'
                            'This script expects only one of them to exist.'
                            ''.format(egs_dir))
        use_multitask_egs = True
    else:
        if not os.path.exists('{0}/valid_diagnostic.egs'.format(egs_dir)):
            raise Exception('neither {0}/valid_diagnostic.egs nor '
                            '{0}/valid_diagnostic.scp exist.'
                            'This script expects one of them.'
                            ''.format(egs_dir))
        use_multitask_egs = False

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):
        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return
        current_num_jobs = int(0.5 + args.num_jobs_initial +
                               (args.num_jobs_final - args.num_jobs_initial) *
                               float(iter) / num_iters)

        if args.stage <= iter:
            lrate = common_train_lib.get_learning_rate(
                iter, current_num_jobs, num_iters, num_archives_processed,
                num_archives_to_process, args.initial_effective_lrate,
                args.final_effective_lrate)

            shrinkage_value = 1.0 - (args.proportional_shrink * lrate)
            if shrinkage_value <= 0.5:
                raise Exception(
                    "proportional-shrink={0} is too large, it gives "
                    "shrink-value={1}".format(args.proportional_shrink,
                                              shrinkage_value))

            train_lib.common.train_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                egs_dir=egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=lrate,
                dropout_edit_string=common_train_lib.get_dropout_edit_string(
                    args.dropout_schedule,
                    float(num_archives_processed) / num_archives_to_process,
                    iter),
                minibatch_size_str=args.minibatch_size,
                frames_per_eg=args.frames_per_eg,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shrinkage_value=shrinkage_value,
                shuffle_buffer_size=args.shuffle_buffer_size,
                run_opts=run_opts,
                get_raw_nnet_from_am=False,
                image_augmentation_opts=args.image_augmentation_opts,
                use_multitask_egs=use_multitask_egs,
                backstitch_training_scale=args.backstitch_training_scale,
                backstitch_training_interval=args.backstitch_training_interval)

            if args.cleanup:
                # do a clean up everything but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(args.dir,
                                              iter - 2,
                                              num_iters,
                                              models_to_combine,
                                              args.preserve_model_interval,
                                              get_raw_nnet_from_am=False)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times,
                     data] = (nnet3_log_parse.generate_acc_logprob_report(
                         args.dir))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs

    if args.stage <= num_iters:
        if args.do_final_combination:
            logger.info("Doing final combination to produce final.raw")
            train_lib.common.combine_models(
                dir=args.dir,
                num_iters=num_iters,
                models_to_combine=models_to_combine,
                egs_dir=egs_dir,
                minibatch_size_str=args.minibatch_size,
                run_opts=run_opts,
                get_raw_nnet_from_am=False,
                max_objective_evaluations=args.max_objective_evaluations,
                use_multitask_egs=use_multitask_egs)
        else:
            common_lib.force_symlink("{0}.raw".format(num_iters),
                                     "{0}/final.raw".format(args.dir))

    if args.compute_average_posteriors and args.stage <= num_iters + 1:
        logger.info("Getting average posterior for output-node 'output'.")
        train_lib.common.compute_average_posterior(
            dir=args.dir,
            iter='final',
            egs_dir=egs_dir,
            num_archives=num_archives,
            prior_subset_size=args.prior_subset_size,
            run_opts=run_opts,
            get_raw_nnet_from_am=False)

    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = args.remove_egs
        if args.egs_dir is not None:
            # this egs_dir was not created by this experiment so we will not
            # delete it
            remove_egs = False

        common_train_lib.clean_nnet_dir(
            nnet_dir=args.dir,
            num_iters=num_iters,
            egs_dir=egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs,
            get_raw_nnet_from_am=False)

    # do some reporting
    outputs_list = common_train_lib.get_outputs_list(
        "{0}/final.raw".format(args.dir), get_raw_nnet_from_am=False)
    if 'output' in outputs_list:
        [report, times,
         data] = nnet3_log_parse.generate_acc_logprob_report(args.dir)
        if args.email is not None:
            common_lib.send_mail(
                report, "Update : Expt {0} : "
                "complete".format(args.dir), args.email)

        with open(
                "{dir}/accuracy.{output_name}.report".format(
                    dir=args.dir, output_name="output"), "w") as f:
            f.write(report)

    common_lib.execute_command("steps/info/nnet3_dir_info.pl "
                               "{0}".format(args.dir))
示例#2
0
def train(args, run_opts):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Set some variables.
    config_dir = '{0}/configs'.format(args.dir)
    am_var_file = '{0}/vars_am'.format(config_dir)
    xvec_var_file = '{0}/vars_xvec'.format(config_dir)
    am_variables = common_train_lib.parse_generic_config_vars_file(am_var_file)
    xvec_variables = common_train_lib.parse_generic_config_vars_file(xvec_var_file)

    # Set some variables.
    try:
        am_model_left_context = am_variables['model_left_context']
        am_model_right_context = am_variables['model_right_context']
        xvec_model_left_context = xvec_variables['model_left_context']
        xvec_model_right_context = xvec_variables['model_right_context']
    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    am_left_context = am_model_left_context
    am_right_context = am_model_right_context
    xvec_left_context = xvec_model_left_context
    xvec_right_context = xvec_model_right_context

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.
    if (args.stage <= -5) and os.path.exists(args.dir+"/configs/init.config"):
        logger.info("Initializing a basic network for estimating "
                    "preconditioning matrix")
        common_lib.execute_command(
            """{command} {dir}/log/nnet_init.log \
                    nnet3-init --srand=-2 {dir}/configs/init.config \
                    {dir}/init.raw""".format(command=run_opts.command,
                                             dir=args.dir))

    am_egs_dir = args.am_egs_dir
    xvec_egs_dir = args.xvec_egs_dir
    am_output_name = args.am_output_name
    xvec_output_name = args.xvec_output_name
    am_weight = args.am_weight
    xvec_weight = args.xvec_weight

    feat_dim = int(common_lib.get_command_stdout("cat {0}/info/feat_dim".format(am_egs_dir)))
    num_archives = int(common_lib.get_command_stdout("cat {0}/info/num_archives".format(am_egs_dir)))

    tmp_feat_dim = int(common_lib.get_command_stdout("cat {0}/info/feat_dim".format(xvec_egs_dir)))
    tmp_num_archives = int(common_lib.get_command_stdout("cat {0}/info/num_archives".format(xvec_egs_dir)))

    # frames_per_eg is no longer a parameter but load from am_egs/info/frames_per_eg
    am_frames_per_eg = int(common_lib.get_command_stdout("cat {0}/info/frames_per_eg".format(am_egs_dir)))

    if feat_dim != tmp_feat_dim or num_archives*am_frames_per_eg != tmp_num_archives:
        raise Exception('The am egs and xvec egs do not match')

    if args.num_jobs_final > num_archives:
        raise Exception('num_jobs_final cannot exceed the number of archives '
                        'in the egs directory')

    # # No need to copy files for decoding
    # common_train_lib.copy_egs_properties_to_exp_dir(am_egs_dir, args.dir)

    if args.stage <= -3 and os.path.exists(args.dir+"/configs/init.config"):
        logger.info('Computing the preconditioning matrix for input features')

        train_lib.common.compute_preconditioning_matrix(
            args.dir, egs_dir, num_archives, run_opts,
            max_lda_jobs=args.max_lda_jobs,
            rand_prune=args.rand_prune)

    if args.stage <= -1:
        logger.info("Preparing the initial network.")
        common_train_lib.prepare_initial_network(args.dir, run_opts)

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_expanded = num_archives * am_frames_per_eg
    num_archives_to_process = int(args.num_epochs * num_archives_expanded)
    num_archives_processed = 0
    num_iters = ((num_archives_to_process * 2)
                 / (args.num_jobs_initial + args.num_jobs_final))

    # If do_final_combination is True, compute the set of models_to_combine.
    # Otherwise, models_to_combine will be none.
    if args.do_final_combination:
        models_to_combine = common_train_lib.get_model_combine_iters(
            num_iters, args.num_epochs,
            num_archives_expanded, args.max_models_combine,
            args.num_jobs_final)
    else:
        models_to_combine = None

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):
        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return
        current_num_jobs = int(0.5 + args.num_jobs_initial
                               + (args.num_jobs_final - args.num_jobs_initial)
                               * float(iter) / num_iters)

        if args.stage <= iter:
            lrate = common_train_lib.get_learning_rate(iter, current_num_jobs,
                                                       num_iters,
                                                       num_archives_processed,
                                                       num_archives_to_process,
                                                       args.initial_effective_lrate,
                                                       args.final_effective_lrate)
            shrinkage_value = 1.0 - (args.proportional_shrink * lrate)
            if shrinkage_value <= 0.5:
                raise Exception("proportional-shrink={0} is too large, it gives "
                                "shrink-value={1}".format(args.proportional_shrink,
                                                          shrinkage_value))

            percent = num_archives_processed * 100.0 / num_archives_to_process
            epoch = (num_archives_processed * args.num_epochs
                     / num_archives_to_process)
            shrink_info_str = ''
            if shrinkage_value != 1.0:
                shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value)
            logger.info("Iter: {0}/{1}    "
                        "Epoch: {2:0.2f}/{3:0.1f} ({4:0.1f}% complete)    "
                        "lr: {5:0.6f}    {6}".format(iter, num_iters - 1,
                                                     epoch, args.num_epochs,
                                                     percent,
                                                     lrate, shrink_info_str))
            train_lib.common.train_cvector_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                am_output_name=am_output_name,
                am_weight=am_weight,
                am_egs_dir=am_egs_dir,
                xvec_output_name=xvec_output_name,
                xvec_weight=xvec_weight,
                xvec_egs_dir=xvec_egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=lrate,
                minibatch_size_str=args.minibatch_size,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shuffle_buffer_size=args.shuffle_buffer_size,
                run_opts=run_opts,
                am_frames_per_eg=am_frames_per_eg,
                dropout_edit_string=common_train_lib.get_dropout_edit_string(
                    args.dropout_schedule,
                    float(num_archives_processed) / num_archives_to_process,
                    iter),
                shrinkage_value=shrinkage_value,
                get_raw_nnet_from_am=False,
                backstitch_training_scale=args.backstitch_training_scale,
                backstitch_training_interval=args.backstitch_training_interval)

            if args.cleanup:
                # do a clean up everythin but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(
                    args.dir, iter-2, num_iters, models_to_combine,
                    args.preserve_model_interval,
                    get_raw_nnet_from_am=False)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times, data] = (
                        nnet3_log_parse.generate_acc_logprob_report(args.dir))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs

    # when we do final combination, just use the xvector egs
    if args.stage <= num_iters:
        if args.do_final_combination:
            logger.info("Doing final combination to produce final.mdl")

            train_lib.common.combine_models(
                dir=args.dir, num_iters=num_iters,
                models_to_combine=models_to_combine,
                egs_dir=xvec_egs_dir,
                minibatch_size_str="64", run_opts=run_opts,
                get_raw_nnet_from_am=False,
                max_objective_evaluations=args.max_objective_evaluations,
                use_egs=True)
                # sum_to_one_penalty=args.combine_sum_to_one_penalty,
        else:
            common_lib.force_symlink("{0}.raw".format(num_iters),
                                     "{0}/final.raw".format(args.dir))
    
    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = False

        common_train_lib.clean_nnet_dir(
            nnet_dir=args.dir, num_iters=num_iters, egs_dir=am_egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs,
            get_raw_nnet_from_am=False)

    # TODO: we may trace other output nodes expect for "output"
    # do some reporting
    outputs_list = common_train_lib.get_outputs_list("{0}/final.raw".format(
        args.dir), get_raw_nnet_from_am=False)
    if 'output' in outputs_list:
        [report, times, data] = nnet3_log_parse.generate_acc_logprob_report(args.dir)
        if args.email is not None:
            common_lib.send_mail(report, "Update : Expt {0} : "
                                         "complete".format(args.dir),
                                 args.email)
            with open("{dir}/accuracy.{output_name}.report".format(dir=args.dir,
                                                                   output_name="output"),
                      "w") as f:
                f.write(report)

    common_lib.execute_command("subtools/kaldi/steps/info/nnet3_dir_info.pl "
                               "{0}".format(args.dir))
示例#3
0
def train(args, run_opts, background_process_handler):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Set some variables.
    # num_leaves = common_lib.get_number_of_leaves_from_tree(args.ali_dir)
    num_jobs = common_lib.get_number_of_jobs(args.ali_dir)
    feat_dim = common_lib.get_feat_dim(args.feat_dir)
    ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)

    # split the training data into parts for individual jobs
    # we will use the same number of jobs as that used for alignment
    common_lib.split_data(args.feat_dir, num_jobs)
    shutil.copy('{0}/tree'.format(args.ali_dir), args.dir)

    with open('{0}/num_jobs'.format(args.dir), 'w') as f:
        f.write(str(num_jobs))

    config_dir = '{0}/configs'.format(args.dir)
    var_file = '{0}/vars'.format(config_dir)

    variables = common_train_lib.parse_generic_config_vars_file(var_file)

    # Set some variables.
    try:
        model_left_context = variables['model_left_context']
        model_right_context = variables['model_right_context']
        # this is really the number of times we add layers to the network for
        # discriminative pretraining
        num_hidden_layers = variables['num_hidden_layers']
    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    left_context = args.chunk_left_context + model_left_context
    right_context = args.chunk_right_context + model_right_context

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.

    if (args.stage <= -5):
        logger.info("Initializing a basic network for estimating "
                    "preconditioning matrix")
        common_lib.run_job(
            """{command} {dir}/log/nnet_init.log \
                    nnet3-init --srand=-2 {dir}/configs/init.config \
                    {dir}/init.raw""".format(command=run_opts.command,
                                             dir=args.dir))

    default_egs_dir = '{0}/egs'.format(args.dir)
    if (args.stage <= -4) and args.egs_dir is None:
        logger.info("Generating egs")

        train_lib.acoustic_model.generate_egs(
            data=args.feat_dir, alidir=args.ali_dir, egs_dir=default_egs_dir,
            left_context=left_context, right_context=right_context,
            run_opts=run_opts,
            frames_per_eg=args.frames_per_eg,
            srand=args.srand,
            egs_opts=args.egs_opts,
            cmvn_opts=args.cmvn_opts,
            online_ivector_dir=args.online_ivector_dir,
            samples_per_iter=args.samples_per_iter,
            transform_dir=args.transform_dir,
            stage=args.egs_stage)

    if args.egs_dir is None:
        egs_dir = default_egs_dir
    else:
        egs_dir = args.egs_dir

    [egs_left_context, egs_right_context,
     frames_per_eg, num_archives] = (
        common_train_lib.verify_egs_dir(egs_dir, feat_dim, ivector_dim,
                                        left_context, right_context))
    assert(args.frames_per_eg == frames_per_eg)

    if (args.num_jobs_final > num_archives):
        raise Exception('num_jobs_final cannot exceed the number of archives '
                        'in the egs directory')

    # copy the properties of the egs to dir for
    # use during decoding
    common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)

    if (args.stage <= -3):
        logger.info('Computing the preconditioning matrix for input features')

        train_lib.common.compute_preconditioning_matrix(
            args.dir, egs_dir, num_archives, run_opts,
            max_lda_jobs=args.max_lda_jobs,
            rand_prune=args.rand_prune)

    if (args.stage <= -2):
        logger.info("Computing initial vector for FixedScaleComponent before"
                    " softmax, using priors^{prior_scale} and rescaling to"
                    " average 1".format(
                        prior_scale=args.presoftmax_prior_scale_power))

        common_train_lib.compute_presoftmax_prior_scale(
                args.dir, args.ali_dir, num_jobs, run_opts,
                presoftmax_prior_scale_power=args.presoftmax_prior_scale_power)

    if (args.stage <= -1):
        logger.info("Preparing the initial acoustic model.")
        train_lib.acoustic_model.prepare_initial_acoustic_model(
            args.dir, args.ali_dir, run_opts)

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_expanded = num_archives * args.frames_per_eg
    num_archives_to_process = args.num_epochs * num_archives_expanded
    num_archives_processed = 0
    num_iters = ((num_archives_to_process * 2)
                 / (args.num_jobs_initial + args.num_jobs_final))

    models_to_combine = common_train_lib.verify_iterations(
        num_iters, args.num_epochs,
        num_hidden_layers, num_archives_expanded,
        args.max_models_combine, args.add_layers_period,
        args.num_jobs_final)

    def learning_rate(iter, current_num_jobs, num_archives_processed):
        return common_train_lib.get_learning_rate(iter, current_num_jobs,
                                                  num_iters,
                                                  num_archives_processed,
                                                  num_archives_to_process,
                                                  args.initial_effective_lrate,
                                                  args.final_effective_lrate)

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):
        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return
        current_num_jobs = int(0.5 + args.num_jobs_initial
                               + (args.num_jobs_final - args.num_jobs_initial)
                               * float(iter) / num_iters)

        if args.stage <= iter:
            logger.info("On iteration {0}, learning rate is {1}.".format(
                iter, learning_rate(iter, current_num_jobs,
                                    num_archives_processed)))

            train_lib.common.train_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                egs_dir=egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=learning_rate(iter, current_num_jobs,
                                            num_archives_processed),
                minibatch_size=args.minibatch_size,
                frames_per_eg=args.frames_per_eg,
                num_hidden_layers=num_hidden_layers,
                add_layers_period=args.add_layers_period,
                left_context=left_context,
                right_context=right_context,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shuffle_buffer_size=args.shuffle_buffer_size,
                run_opts=run_opts,
                background_process_handler=background_process_handler)

            if args.cleanup:
                # do a clean up everythin but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(
                    args.dir, iter-2, num_iters, models_to_combine,
                    args.preserve_model_interval)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times, data] = (
                        nnet3_log_parse.generate_accuracy_report(args.dir))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs

    if args.stage <= num_iters:
        logger.info("Doing final combination to produce final.mdl")
        train_lib.common.combine_models(
            dir=args.dir, num_iters=num_iters,
            models_to_combine=models_to_combine,
            egs_dir=egs_dir,
            left_context=left_context, right_context=right_context,
            run_opts=run_opts,
            background_process_handler=background_process_handler)

    if args.stage <= num_iters + 1:
        logger.info("Getting average posterior for purposes of "
                    "adjusting the priors.")
        avg_post_vec_file = train_lib.common.compute_average_posterior(
            dir=args.dir, iter='combined', egs_dir=egs_dir,
            num_archives=num_archives,
            left_context=left_context, right_context=right_context,
            prior_subset_size=args.prior_subset_size, run_opts=run_opts)

        logger.info("Re-adjusting priors based on computed posteriors")
        combined_model = "{dir}/combined.mdl".format(dir=args.dir)
        final_model = "{dir}/final.mdl".format(dir=args.dir)
        train_lib.common.adjust_am_priors(args.dir, combined_model,
                                          avg_post_vec_file, final_model,
                                          run_opts)

    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = args.remove_egs
        if args.egs_dir is not None:
            # this egs_dir was not created by this experiment so we will not
            # delete it
            remove_egs = False

        common_train_lib.clean_nnet_dir(
            nnet_dir=args.dir, num_iters=num_iters, egs_dir=egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs)

    # do some reporting
    [report, times, data] = nnet3_log_parse.generate_accuracy_report(args.dir)
    if args.email is not None:
        common_lib.send_mail(report, "Update : Expt {0} : "
                                     "complete".format(args.dir), args.email)

    with open("{dir}/accuracy.report".format(dir=args.dir), "w") as f:
        f.write(report)

    common_lib.run_job("steps/info/nnet3_dir_info.pl "
                       "{0}".format(args.dir))
示例#4
0
def train(args, run_opts):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Set some variables.
    feat_dim = common_lib.get_feat_dim(args.feat_dir)
    ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)
    ivector_id = common_lib.get_ivector_extractor_id(args.online_ivector_dir)

    if args.input_model is None:
        config_dir = '{0}/configs'.format(args.dir)
        var_file = '{0}/vars'.format(config_dir)

        variables = common_train_lib.parse_generic_config_vars_file(var_file)
    else:
        # If args.input_model is specified, the model left and right contexts
        # are computed using input_model.
        variables = common_train_lib.get_input_model_info(args.input_model)

    # Set some variables.
    try:
        model_left_context = variables['model_left_context']
        model_right_context = variables['model_right_context']
    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    left_context = args.chunk_left_context + model_left_context
    right_context = args.chunk_right_context + model_right_context
    left_context_initial = (args.chunk_left_context_initial + model_left_context if
                            args.chunk_left_context_initial >= 0 else -1)
    right_context_final = (args.chunk_right_context_final + model_right_context if
                           args.chunk_right_context_final >= 0 else -1)

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.

    if (args.stage <= -4) and os.path.exists(args.dir+"/configs/init.config") and \
       (args.input_model is None):
        logger.info("Initializing the network for computing the LDA stats")
        common_lib.execute_command(
            """{command} {dir}/log/nnet_init.log \
                    nnet3-init --srand=-2 {dir}/configs/init.config \
                    {dir}/init.raw""".format(command=run_opts.command,
                                             dir=args.dir))

    default_egs_dir = '{0}/egs'.format(args.dir)
    if (args.stage <= -3) and args.egs_dir is None:
        logger.info("Generating egs")

        if args.use_dense_targets:
            target_type = "dense"
            try:
                num_targets = int(variables['num_targets'])
                if (common_lib.get_feat_dim_from_scp(args.targets_scp)
                        != num_targets):
                    raise Exception("Mismatch between num-targets provided to "
                                    "script vs configs")
            except KeyError as e:
                num_targets = -1
        else:
            target_type = "sparse"
            try:
                num_targets = int(variables['num_targets'])
            except KeyError as e:
                raise Exception("KeyError {0}: Variables need to be defined "
                                "in {1}".format(
                                    str(e), '{0}/configs'.format(args.dir)))

        train_lib.raw_model.generate_egs_using_targets(
            data=args.feat_dir, targets_scp=args.targets_scp,
            egs_dir=default_egs_dir,
            left_context=left_context,
            right_context=right_context,
            left_context_initial=left_context_initial,
            right_context_final=right_context_final,
            run_opts=run_opts,
            frames_per_eg_str=args.chunk_width,
            srand=args.srand,
            egs_opts=args.egs_opts,
            cmvn_opts=args.cmvn_opts,
            online_ivector_dir=args.online_ivector_dir,
            samples_per_iter=args.samples_per_iter,
            stage=args.egs_stage,
            target_type=target_type,
            num_targets=num_targets)

    if args.egs_dir is None:
        egs_dir = default_egs_dir
    else:
        egs_dir = args.egs_dir

    [egs_left_context, egs_right_context,
     frames_per_eg_str, num_archives] = (
         common_train_lib.verify_egs_dir(egs_dir, feat_dim,
                                         ivector_dim, ivector_id,
                                         left_context, right_context,
                                         left_context_initial,
                                         right_context_final))
    if args.chunk_width != frames_per_eg_str:
        raise Exception("mismatch between --egs.chunk-width and the frames_per_eg "
                        "in the egs dir {0} vs {1}".format(args.chunk_width,
                                                           frames_per_eg_str))

    if args.num_jobs_final > num_archives:
        raise Exception('num_jobs_final cannot exceed the number of archives '
                        'in the egs directory')

    # copy the properties of the egs to dir for
    # use during decoding
    common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)

    if args.stage <= -2 and os.path.exists(args.dir+"/configs/init.config") and \
       (args.input_model is None):
        logger.info('Computing the preconditioning matrix for input features')

        train_lib.common.compute_preconditioning_matrix(
            args.dir, egs_dir, num_archives, run_opts,
            max_lda_jobs=args.max_lda_jobs,
            rand_prune=args.rand_prune)

    if args.stage <= -1:
        logger.info("Preparing the initial network.")
        common_train_lib.prepare_initial_network(args.dir, run_opts, args.srand, args.input_model)

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_to_process = int(args.num_epochs * num_archives)
    num_archives_processed = 0
    num_iters = int((num_archives_to_process * 2) / (args.num_jobs_initial + args.num_jobs_final))

    # If do_final_combination is True, compute the set of models_to_combine.
    # Otherwise, models_to_combine will be none.
    if args.do_final_combination:
        models_to_combine = common_train_lib.get_model_combine_iters(
            num_iters, args.num_epochs,
            num_archives, args.max_models_combine,
            args.num_jobs_final)
    else:
        models_to_combine = None

    if (os.path.exists('{0}/valid_diagnostic.scp'.format(egs_dir))):
        if (os.path.exists('{0}/valid_diagnostic.egs'.format(egs_dir))):
            raise Exception('both {0}/valid_diagnostic.egs and '
                            '{0}/valid_diagnostic.scp exist.'
                            'This script expects only one of them to exist.'
                            ''.format(egs_dir))
        use_multitask_egs = True
    else:
        if (not os.path.exists('{0}/valid_diagnostic.egs'
                               ''.format(egs_dir))):
            raise Exception('neither {0}/valid_diagnostic.egs nor '
                            '{0}/valid_diagnostic.scp exist.'
                            'This script expects one of them.'
                            ''.format(egs_dir))
        use_multitask_egs = False

    min_deriv_time = None
    max_deriv_time_relative = None
    if args.deriv_truncate_margin is not None:
        min_deriv_time = -args.deriv_truncate_margin - model_left_context
        max_deriv_time_relative = \
           args.deriv_truncate_margin + model_right_context

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):
        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return

        current_num_jobs = common_train_lib.get_current_num_jobs(
            iter, num_iters,
            args.num_jobs_initial, args.num_jobs_step, args.num_jobs_final)

        if args.stage <= iter:
            model_file = "{dir}/{iter}.raw".format(dir=args.dir, iter=iter)

            lrate = common_train_lib.get_learning_rate(iter, current_num_jobs,
                                                       num_iters,
                                                       num_archives_processed,
                                                       num_archives_to_process,
                                                       args.initial_effective_lrate,
                                                       args.final_effective_lrate)

            # shrinkage_value is a scale on the parameters.
            shrinkage_value = 1.0 - (args.proportional_shrink * lrate)
            if shrinkage_value <= 0.5:
                raise Exception("proportional-shrink={0} is too large, it gives "
                                "shrink-value={1}".format(args.proportional_shrink,
                                                          shrinkage_value))
            if args.shrink_value < shrinkage_value:
                shrinkage_value = (args.shrink_value
                                   if common_train_lib.should_do_shrinkage(
                                           iter, model_file,
                                           args.shrink_saturation_threshold,
                                           get_raw_nnet_from_am=False)
                                   else shrinkage_value)

            percent = num_archives_processed * 100.0 / num_archives_to_process
            epoch = (num_archives_processed * args.num_epochs
                     / num_archives_to_process)
            shrink_info_str = ''
            if shrinkage_value != 1.0:
                shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value)
            logger.info("Iter: {0}/{1}   Jobs: {2}   "
                        "Epoch: {3:0.2f}/{4:0.1f} ({5:0.1f}% complete)   "
                        "lr: {6:0.6f}   {7}".format(iter, num_iters - 1,
                                                    current_num_jobs,
                                                    epoch, args.num_epochs,
                                                    percent,
                                                    lrate, shrink_info_str))

            train_lib.common.train_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                egs_dir=egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=lrate,
                dropout_edit_string=common_train_lib.get_dropout_edit_string(
                    args.dropout_schedule,
                    float(num_archives_processed) / num_archives_to_process,
                    iter),
                train_opts=' '.join(args.train_opts),
                shrinkage_value=shrinkage_value,
                minibatch_size_str=args.num_chunk_per_minibatch,
                min_deriv_time=min_deriv_time,
                max_deriv_time_relative=max_deriv_time_relative,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shuffle_buffer_size=args.shuffle_buffer_size,
                run_opts=run_opts,
                get_raw_nnet_from_am=False,
                use_multitask_egs=use_multitask_egs,
                compute_per_dim_accuracy=args.compute_per_dim_accuracy)

            if args.cleanup:
                # do a clean up everythin but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(
                    args.dir, iter-2, num_iters, models_to_combine,
                    args.preserve_model_interval,
                    get_raw_nnet_from_am=False)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times, data] = (
                        nnet3_log_parse.generate_acc_logprob_report(args.dir))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs

    if args.stage <= num_iters:
        if args.do_final_combination:
            logger.info("Doing final combination to produce final.raw")
            train_lib.common.combine_models(
                dir=args.dir, num_iters=num_iters,
                models_to_combine=models_to_combine, egs_dir=egs_dir,
                minibatch_size_str=args.num_chunk_per_minibatch,
                run_opts=run_opts, chunk_width=args.chunk_width,
                get_raw_nnet_from_am=False,
                compute_per_dim_accuracy=args.compute_per_dim_accuracy,
                max_objective_evaluations=args.max_objective_evaluations,
                use_multitask_egs=use_multitask_egs)
        else:
            common_lib.force_symlink("{0}.raw".format(num_iters),
                                     "{0}/final.raw".format(args.dir))

    if args.compute_average_posteriors and args.stage <= num_iters + 1:
        logger.info("Getting average posterior for purposes of "
                    "adjusting the priors.")
        train_lib.common.compute_average_posterior(
            dir=args.dir, iter='final', egs_dir=egs_dir,
            num_archives=num_archives,
            prior_subset_size=args.prior_subset_size, run_opts=run_opts,
            get_raw_nnet_from_am=False)

    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = args.remove_egs
        if args.egs_dir is not None:
            # this egs_dir was not created by this experiment so we will not
            # delete it
            remove_egs = False

        common_train_lib.clean_nnet_dir(
            nnet_dir=args.dir, num_iters=num_iters, egs_dir=egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs,
            get_raw_nnet_from_am=False)

    # do some reporting
    [report, times, data] = nnet3_log_parse.generate_acc_logprob_report(args.dir)
    if args.email is not None:
        common_lib.send_mail(report, "Update : Expt {0} : "
                                     "complete".format(args.dir), args.email)

    with open("{dir}/accuracy.report".format(dir=args.dir), "w") as f:
        f.write(report)

    common_lib.execute_command("subtools/kaldi/steps/info/nnet3_dir_info.pl "
                               "{0}".format(args.dir))
示例#5
0
def train(args, run_opts):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Set some variables.
    feat_dim = common_lib.get_feat_dim(args.feat_dir)
    ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)
    ivector_id = common_lib.get_ivector_extractor_id(args.online_ivector_dir)


    config_dir = '{0}/configs'.format(args.dir)
    var_file = '{0}/vars'.format(config_dir)

    variables = common_train_lib.parse_generic_config_vars_file(var_file)

    # Set some variables.
    try:
        model_left_context = variables['model_left_context']
        model_right_context = variables['model_right_context']
    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    left_context = args.chunk_left_context + model_left_context
    right_context = args.chunk_right_context + model_right_context
    left_context_initial = (args.chunk_left_context_initial + model_left_context if
                            args.chunk_left_context_initial >= 0 else -1)
    right_context_final = (args.chunk_right_context_final + model_right_context if
                           args.chunk_right_context_final >= 0 else -1)

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.

    if (args.stage <= -4) and os.path.exists(args.dir+"/configs/init.config"):
        logger.info("Initializing the network for computing the LDA stats")
        common_lib.execute_command(
            """{command} {dir}/log/nnet_init.log \
                    nnet3-init --srand=-2 {dir}/configs/init.config \
                    {dir}/init.raw""".format(command=run_opts.command,
                                             dir=args.dir))

    default_egs_dir = '{0}/egs'.format(args.dir)
    if (args.stage <= -3) and args.egs_dir is None:
        logger.info("Generating egs")

        if args.use_dense_targets:
            target_type = "dense"
            try:
                num_targets = int(variables['num_targets'])
                if (common_lib.get_feat_dim_from_scp(args.targets_scp)
                        != num_targets):
                    raise Exception("Mismatch between num-targets provided to "
                                    "script vs configs")
            except KeyError as e:
                num_targets = -1
        else:
            target_type = "sparse"
            try:
                num_targets = int(variables['num_targets'])
            except KeyError as e:
                raise Exception("KeyError {0}: Variables need to be defined "
                                "in {1}".format(
                                    str(e), '{0}/configs'.format(args.dir)))

        train_lib.raw_model.generate_egs_using_targets(
            data=args.feat_dir, targets_scp=args.targets_scp,
            egs_dir=default_egs_dir,
            left_context=left_context,
            right_context=right_context,
            left_context_initial=left_context_initial,
            right_context_final=right_context_final,
            run_opts=run_opts,
            frames_per_eg_str=args.chunk_width,
            srand=args.srand,
            egs_opts=args.egs_opts,
            cmvn_opts=args.cmvn_opts,
            online_ivector_dir=args.online_ivector_dir,
            samples_per_iter=args.samples_per_iter,
            stage=args.egs_stage,
            target_type=target_type,
            num_targets=num_targets)

    if args.egs_dir is None:
        egs_dir = default_egs_dir
    else:
        egs_dir = args.egs_dir

    [egs_left_context, egs_right_context,
     frames_per_eg_str, num_archives] = (
         common_train_lib.verify_egs_dir(egs_dir, feat_dim,
                                         ivector_dim, ivector_id,
                                         left_context, right_context,
                                         left_context_initial,
                                         right_context_final))
    if args.chunk_width != frames_per_eg_str:
        raise Exception("mismatch between --egs.chunk-width and the frames_per_eg "
                        "in the egs dir {0} vs {1}".format(args.chunk_width,
                                                           frames_per_eg_str))

    if args.num_jobs_final > num_archives:
        raise Exception('num_jobs_final cannot exceed the number of archives '
                        'in the egs directory')

    # copy the properties of the egs to dir for
    # use during decoding
    common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)

    if args.stage <= -2 and os.path.exists(args.dir+"/configs/init.config"):
        logger.info('Computing the preconditioning matrix for input features')

        train_lib.common.compute_preconditioning_matrix(
            args.dir, egs_dir, num_archives, run_opts,
            max_lda_jobs=args.max_lda_jobs,
            rand_prune=args.rand_prune)

    if args.stage <= -1:
        logger.info("Preparing the initial network.")
        common_train_lib.prepare_initial_network(args.dir, run_opts)

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_to_process = int(args.num_epochs * num_archives)
    num_archives_processed = 0
    num_iters = ((num_archives_to_process * 2)
                 / (args.num_jobs_initial + args.num_jobs_final))

    # If do_final_combination is True, compute the set of models_to_combine.
    # Otherwise, models_to_combine will be none.
    if args.do_final_combination:
        models_to_combine = common_train_lib.get_model_combine_iters(
            num_iters, args.num_epochs,
            num_archives, args.max_models_combine,
            args.num_jobs_final)
    else:
        models_to_combine = None

    if (os.path.exists('{0}/valid_diagnostic.scp'.format(egs_dir))):
        if (os.path.exists('{0}/valid_diagnostic.egs'.format(egs_dir))):
            raise Exception('both {0}/valid_diagnostic.egs and '
                            '{0}/valid_diagnostic.scp exist.'
                            'This script expects only one of them to exist.'
                            ''.format(egs_dir))
        use_multitask_egs = True
    else:
        if (not os.path.exists('{0}/valid_diagnostic.egs'
                               ''.format(egs_dir))):
            raise Exception('neither {0}/valid_diagnostic.egs nor '
                            '{0}/valid_diagnostic.scp exist.'
                            'This script expects one of them.'
                            ''.format(egs_dir))
        use_multitask_egs = False

    min_deriv_time = None
    max_deriv_time_relative = None
    if args.deriv_truncate_margin is not None:
        min_deriv_time = -args.deriv_truncate_margin - model_left_context
        max_deriv_time_relative = \
           args.deriv_truncate_margin + model_right_context

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):
        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return
        current_num_jobs = int(0.5 + args.num_jobs_initial
                               + (args.num_jobs_final - args.num_jobs_initial)
                               * float(iter) / num_iters)

        if args.stage <= iter:
            model_file = "{dir}/{iter}.raw".format(dir=args.dir, iter=iter)

            lrate = common_train_lib.get_learning_rate(iter, current_num_jobs,
                                                       num_iters,
                                                       num_archives_processed,
                                                       num_archives_to_process,
                                                       args.initial_effective_lrate,
                                                       args.final_effective_lrate)

            # shrinkage_value is a scale on the parameters.
            shrinkage_value = 1.0 - (args.proportional_shrink * lrate)
            if shrinkage_value <= 0.5:
                raise Exception("proportional-shrink={0} is too large, it gives "
                                "shrink-value={1}".format(args.proportional_shrink,
                                                          shrinkage_value))
            if args.shrink_value < shrinkage_value:
                shrinkage_value = (args.shrink_value
                                   if common_train_lib.should_do_shrinkage(
                                           iter, model_file,
                                           args.shrink_saturation_threshold,
                                           get_raw_nnet_from_am=False)
                                   else shrinkage_value)

            percent = num_archives_processed * 100.0 / num_archives_to_process
            epoch = (num_archives_processed * args.num_epochs
                     / num_archives_to_process)
            shrink_info_str = ''
            if shrinkage_value != 1.0:
                shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value)
            logger.info("Iter: {0}/{1}    "
                        "Epoch: {2:0.2f}/{3:0.1f} ({4:0.1f}% complete)    "
                        "lr: {5:0.6f}    {6}".format(iter, num_iters - 1,
                                                     epoch, args.num_epochs,
                                                     percent,
                                                     lrate, shrink_info_str))

            train_lib.common.train_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                egs_dir=egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=lrate,
                dropout_edit_string=common_train_lib.get_dropout_edit_string(
                    args.dropout_schedule,
                    float(num_archives_processed) / num_archives_to_process,
                    iter),
                train_opts=' '.join(args.train_opts),
                shrinkage_value=shrinkage_value,
                minibatch_size_str=args.num_chunk_per_minibatch,
                min_deriv_time=min_deriv_time,
                max_deriv_time_relative=max_deriv_time_relative,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shuffle_buffer_size=args.shuffle_buffer_size,
                run_opts=run_opts,
                get_raw_nnet_from_am=False,
                use_multitask_egs=use_multitask_egs,
                compute_per_dim_accuracy=args.compute_per_dim_accuracy)

            if args.cleanup:
                # do a clean up everythin but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(
                    args.dir, iter-2, num_iters, models_to_combine,
                    args.preserve_model_interval,
                    get_raw_nnet_from_am=False)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times, data] = (
                        nnet3_log_parse.generate_acc_logprob_report(args.dir))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs

    if args.stage <= num_iters:
        if args.do_final_combination:
            logger.info("Doing final combination to produce final.raw")
            train_lib.common.combine_models(
                dir=args.dir, num_iters=num_iters,
                models_to_combine=models_to_combine, egs_dir=egs_dir,
                minibatch_size_str=args.num_chunk_per_minibatch,
                run_opts=run_opts, chunk_width=args.chunk_width,
                get_raw_nnet_from_am=False,
                compute_per_dim_accuracy=args.compute_per_dim_accuracy,
                max_objective_evaluations=args.max_objective_evaluations)
        else:
            common_lib.force_symlink("{0}.raw".format(num_iters),
                                     "{0}/final.raw".format(args.dir))

    if args.compute_average_posteriors and args.stage <= num_iters + 1:
        logger.info("Getting average posterior for purposes of "
                    "adjusting the priors.")
        train_lib.common.compute_average_posterior(
            dir=args.dir, iter='final', egs_dir=egs_dir,
            num_archives=num_archives,
            prior_subset_size=args.prior_subset_size, run_opts=run_opts,
            get_raw_nnet_from_am=False)

    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = args.remove_egs
        if args.egs_dir is not None:
            # this egs_dir was not created by this experiment so we will not
            # delete it
            remove_egs = False

        common_train_lib.clean_nnet_dir(
            nnet_dir=args.dir, num_iters=num_iters, egs_dir=egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs,
            get_raw_nnet_from_am=False)

    # do some reporting
    [report, times, data] = nnet3_log_parse.generate_acc_logprob_report(args.dir)
    if args.email is not None:
        common_lib.send_mail(report, "Update : Expt {0} : "
                                     "complete".format(args.dir), args.email)

    with open("{dir}/accuracy.report".format(dir=args.dir), "w") as f:
        f.write(report)

    common_lib.execute_command("steps/info/nnet3_dir_info.pl "
                               "{0}".format(args.dir))
示例#6
0
def train(args, run_opts):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Copy phones.txt from ali-dir to dir. Later, steps/nnet3/decode.sh will
    # use it to check compatibility between training and decoding phone-sets.
    shutil.copy('{0}/phones.txt'.format(args.ali_dir), args.dir)

    # Set some variables.
    # num_leaves = common_lib.get_number_of_leaves_from_tree(args.ali_dir)
    num_jobs = common_lib.get_number_of_jobs(args.ali_dir)
    feat_dim = common_lib.get_feat_dim(args.feat_dir)
    ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)
    ivector_id = common_lib.get_ivector_extractor_id(args.online_ivector_dir)

    # split the training data into parts for individual jobs
    # we will use the same number of jobs as that used for alignment
    common_lib.execute_command("utils/split_data.sh {0} {1}".format(
        args.feat_dir, num_jobs))
    shutil.copy('{0}/tree'.format(args.ali_dir), args.dir)

    with open('{0}/num_jobs'.format(args.dir), 'w') as f:
        f.write(str(num_jobs))

    if args.input_model is None:
        config_dir = '{0}/configs'.format(args.dir)
        var_file = '{0}/vars'.format(config_dir)

        variables = common_train_lib.parse_generic_config_vars_file(var_file)
    else:
        # If args.input_model is specified, the model left and right contexts
        # are computed using input_model.
        variables = common_train_lib.get_input_model_info(args.input_model)

    # Set some variables.
    try:
        model_left_context = variables['model_left_context']
        model_right_context = variables['model_right_context']
    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    left_context = model_left_context
    right_context = model_right_context

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.

    if (args.stage <= -5) and os.path.exists(args.dir+"/configs/init.config") and \
       (args.input_model is None):
        logger.info("Initializing a basic network for estimating "
                    "preconditioning matrix")
        common_lib.execute_command("""{command} {dir}/log/nnet_init.log \
                    nnet3-init --srand=-2 {dir}/configs/init.config \
                    {dir}/init.raw""".format(command=run_opts.command,
                                             dir=args.dir))

    default_egs_dir = '{0}/egs'.format(args.dir)
    if (args.stage <= -4) and args.egs_dir is None:
        logger.info("Generating egs")

        if args.feat_dir is None:
            raise Exception(
                "--feat-dir option is required if you don't supply --egs-dir")

        train_lib.acoustic_model.generate_egs(
            data=args.feat_dir,
            alidir=args.ali_dir,
            egs_dir=default_egs_dir,
            left_context=left_context,
            right_context=right_context,
            run_opts=run_opts,
            frames_per_eg_str=str(args.frames_per_eg),
            srand=args.srand,
            egs_opts=args.egs_opts,
            cmvn_opts=args.cmvn_opts,
            online_ivector_dir=args.online_ivector_dir,
            samples_per_iter=args.samples_per_iter,
            stage=args.egs_stage)

    if args.egs_dir is None:
        egs_dir = default_egs_dir
    else:
        egs_dir = args.egs_dir

    [egs_left_context, egs_right_context, frames_per_eg_str,
     num_archives] = (common_train_lib.verify_egs_dir(egs_dir, feat_dim,
                                                      ivector_dim, ivector_id,
                                                      left_context,
                                                      right_context))
    assert str(args.frames_per_eg) == frames_per_eg_str

    if args.num_jobs_final > num_archives:
        raise Exception('num_jobs_final cannot exceed the number of archives '
                        'in the egs directory')

    # copy the properties of the egs to dir for
    # use during decoding
    common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)

    if args.stage <= -3 and os.path.exists(args.dir +
                                           "/configs/init.config") and (
                                               args.input_model is None):
        logger.info('Computing the preconditioning matrix for input features')

        train_lib.common.compute_preconditioning_matrix(
            args.dir,
            egs_dir,
            num_archives,
            run_opts,
            max_lda_jobs=args.max_lda_jobs,
            rand_prune=args.rand_prune)

    if args.stage <= -2 and (args.input_model is None):
        logger.info(
            "Computing initial vector for FixedScaleComponent before"
            " softmax, using priors^{prior_scale} and rescaling to"
            " average 1".format(prior_scale=args.presoftmax_prior_scale_power))

        common_train_lib.compute_presoftmax_prior_scale(
            args.dir,
            args.ali_dir,
            num_jobs,
            run_opts,
            presoftmax_prior_scale_power=args.presoftmax_prior_scale_power)

    if args.stage <= -1:
        logger.info("Preparing the initial acoustic model.")
        train_lib.acoustic_model.prepare_initial_acoustic_model(
            args.dir, args.ali_dir, run_opts, input_model=args.input_model)

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_expanded = num_archives * args.frames_per_eg
    num_archives_to_process = int(args.num_epochs * num_archives_expanded)
    num_archives_processed = 0
    num_iters = ((num_archives_to_process * 2) /
                 (args.num_jobs_initial + args.num_jobs_final))

    # If do_final_combination is True, compute the set of models_to_combine.
    # Otherwise, models_to_combine will be none.
    if args.do_final_combination:
        models_to_combine = common_train_lib.get_model_combine_iters(
            num_iters, args.num_epochs, num_archives_expanded,
            args.max_models_combine, args.num_jobs_final)
    else:
        models_to_combine = None

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):
        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return
        current_num_jobs = int(0.5 + args.num_jobs_initial +
                               (args.num_jobs_final - args.num_jobs_initial) *
                               float(iter) / num_iters)

        if args.stage <= iter:
            lrate = common_train_lib.get_learning_rate(
                iter, current_num_jobs, num_iters, num_archives_processed,
                num_archives_to_process, args.initial_effective_lrate,
                args.final_effective_lrate)
            shrinkage_value = 1.0 - (args.proportional_shrink * lrate)
            if shrinkage_value <= 0.5:
                raise Exception(
                    "proportional-shrink={0} is too large, it gives "
                    "shrink-value={1}".format(args.proportional_shrink,
                                              shrinkage_value))

            percent = num_archives_processed * 100.0 / num_archives_to_process
            epoch = (num_archives_processed * args.num_epochs /
                     num_archives_to_process)
            shrink_info_str = ''
            if shrinkage_value != 1.0:
                shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value)
            logger.info("Iter: {0}/{1}    "
                        "Epoch: {2:0.2f}/{3:0.1f} ({4:0.1f}% complete)    "
                        "lr: {5:0.6f}    {6}".format(iter, num_iters - 1,
                                                     epoch, args.num_epochs,
                                                     percent, lrate,
                                                     shrink_info_str))

            train_lib.common.train_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                egs_dir=egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=lrate,
                dropout_edit_string=common_train_lib.get_dropout_edit_string(
                    args.dropout_schedule,
                    float(num_archives_processed) / num_archives_to_process,
                    iter),
                train_opts=' '.join(args.train_opts),
                minibatch_size_str=args.minibatch_size,
                frames_per_eg=args.frames_per_eg,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shrinkage_value=shrinkage_value,
                shuffle_buffer_size=args.shuffle_buffer_size,
                run_opts=run_opts)

            if args.cleanup:
                # do a clean up everythin but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(args.dir, iter - 2, num_iters,
                                              models_to_combine,
                                              args.preserve_model_interval)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times,
                     data] = (nnet3_log_parse.generate_acc_logprob_report(
                         args.dir))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs

    if args.stage <= num_iters:
        if args.do_final_combination:
            logger.info("Doing final combination to produce final.mdl")
            train_lib.common.combine_models(
                dir=args.dir,
                num_iters=num_iters,
                models_to_combine=models_to_combine,
                egs_dir=egs_dir,
                minibatch_size_str=args.minibatch_size,
                run_opts=run_opts,
                max_objective_evaluations=args.max_objective_evaluations)

    if args.stage <= num_iters + 1:
        logger.info("Getting average posterior for purposes of "
                    "adjusting the priors.")

        # If args.do_final_combination is true, we will use the combined model.
        # Otherwise, we will use the last_numbered model.
        real_iter = 'combined' if args.do_final_combination else num_iters
        avg_post_vec_file = train_lib.common.compute_average_posterior(
            dir=args.dir,
            iter=real_iter,
            egs_dir=egs_dir,
            num_archives=num_archives,
            prior_subset_size=args.prior_subset_size,
            run_opts=run_opts)

        logger.info("Re-adjusting priors based on computed posteriors")
        combined_or_last_numbered_model = "{dir}/{iter}.mdl".format(
            dir=args.dir, iter=real_iter)
        final_model = "{dir}/final.mdl".format(dir=args.dir)
        train_lib.common.adjust_am_priors(args.dir,
                                          combined_or_last_numbered_model,
                                          avg_post_vec_file, final_model,
                                          run_opts)

    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = args.remove_egs
        if args.egs_dir is not None:
            # this egs_dir was not created by this experiment so we will not
            # delete it
            remove_egs = False

        common_train_lib.clean_nnet_dir(
            nnet_dir=args.dir,
            num_iters=num_iters,
            egs_dir=egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs)

    # do some reporting
    [report, times,
     data] = nnet3_log_parse.generate_acc_logprob_report(args.dir)
    if args.email is not None:
        common_lib.send_mail(
            report, "Update : Expt {0} : "
            "complete".format(args.dir), args.email)

    with open("{dir}/accuracy.report".format(dir=args.dir), "w") as f:
        f.write(report)

    common_lib.execute_command("steps/info/nnet3_dir_info.pl "
                               "{0}".format(args.dir))
示例#7
0
文件: train.py 项目: lcyhff/kaldi
def train(args, run_opts):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Check files
    chain_lib.check_for_required_files(args.feat_dir, args.tree_dir,
                                       args.lat_dir)

    # Copy phones.txt from tree-dir to dir. Later, steps/nnet3/decode.sh will
    # use it to check compatibility between training and decoding phone-sets.
    shutil.copy('{0}/phones.txt'.format(args.tree_dir), args.dir)

    # Set some variables.
    num_jobs = common_lib.get_number_of_jobs(args.tree_dir)
    feat_dim = common_lib.get_feat_dim(args.feat_dir)
    ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)
    ivector_id = common_lib.get_ivector_extractor_id(args.online_ivector_dir)

    # split the training data into parts for individual jobs
    # we will use the same number of jobs as that used for alignment
    common_lib.execute_command("utils/split_data.sh {0} {1}"
                               "".format(args.feat_dir, num_jobs))
    with open('{0}/num_jobs'.format(args.dir), 'w') as f:
        f.write(str(num_jobs))

    if args.input_model is None:
        config_dir = '{0}/configs'.format(args.dir)
        var_file = '{0}/vars'.format(config_dir)

        variables = common_train_lib.parse_generic_config_vars_file(var_file)
    else:
        # If args.input_model is specified, the model left and right contexts
        # are computed using input_model.
        variables = common_train_lib.get_input_model_info(args.input_model)

    # Set some variables.
    try:
        model_left_context = variables['model_left_context']
        model_right_context = variables['model_right_context']
    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    left_context = args.chunk_left_context + model_left_context
    right_context = args.chunk_right_context + model_right_context
    left_context_initial = (args.chunk_left_context_initial + model_left_context if
                            args.chunk_left_context_initial >= 0 else -1)
    right_context_final = (args.chunk_right_context_final + model_right_context if
                           args.chunk_right_context_final >= 0 else -1)

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.
    if (args.stage <= -6):
        logger.info("Creating phone language-model")
        chain_lib.create_phone_lm(args.dir, args.tree_dir, run_opts,
                                  lm_opts=args.lm_opts)

    if (args.stage <= -5):
        logger.info("Creating denominator FST")
        shutil.copy('{0}/tree'.format(args.tree_dir), args.dir)
        chain_lib.create_denominator_fst(args.dir, args.tree_dir, run_opts)

    if ((args.stage <= -4) and
            os.path.exists("{0}/configs/init.config".format(args.dir))
            and (args.input_model is None)):
        logger.info("Initializing a basic network for estimating "
                    "preconditioning matrix")
        common_lib.execute_command(
            """{command} {dir}/log/nnet_init.log \
            nnet3-init --srand=-2 {dir}/configs/init.config \
            {dir}/init.raw""".format(command=run_opts.command,
                                     dir=args.dir))

    egs_left_context = left_context + args.frame_subsampling_factor / 2
    egs_right_context = right_context + args.frame_subsampling_factor / 2
    # note: the '+ args.frame_subsampling_factor / 2' is to allow for the
    # fact that we'll be shifting the data slightly during training to give
    # variety to the training data.
    egs_left_context_initial = (left_context_initial +
                                args.frame_subsampling_factor / 2 if
                                left_context_initial >= 0 else -1)
    egs_right_context_final = (right_context_final +
                               args.frame_subsampling_factor / 2 if
                               right_context_final >= 0 else -1)

    default_egs_dir = '{0}/egs'.format(args.dir)
    if ((args.stage <= -3) and args.egs_dir is None):
        logger.info("Generating egs")
        if (not os.path.exists("{0}/den.fst".format(args.dir)) or
                not os.path.exists("{0}/normalization.fst".format(args.dir)) or
                not os.path.exists("{0}/tree".format(args.dir))):
            raise Exception("Chain egs generation expects {0}/den.fst, "
                            "{0}/normalization.fst and {0}/tree "
                            "to exist.".format(args.dir))
        # this is where get_egs.sh is called.
        chain_lib.generate_chain_egs(
            dir=args.dir, data=args.feat_dir,
            lat_dir=args.lat_dir, egs_dir=default_egs_dir,
            left_context=egs_left_context,
            right_context=egs_right_context,
            left_context_initial=egs_left_context_initial,
            right_context_final=egs_right_context_final,
            run_opts=run_opts,
            left_tolerance=args.left_tolerance,
            right_tolerance=args.right_tolerance,
            frame_subsampling_factor=args.frame_subsampling_factor,
            alignment_subsampling_factor=args.alignment_subsampling_factor,
            frames_per_eg_str=args.chunk_width,
            srand=args.srand,
            egs_opts=args.egs_opts,
            cmvn_opts=args.cmvn_opts,
            online_ivector_dir=args.online_ivector_dir,
            frames_per_iter=args.frames_per_iter,
            transform_dir=args.transform_dir,
            stage=args.egs_stage)

    if args.egs_dir is None:
        egs_dir = default_egs_dir
    else:
        egs_dir = args.egs_dir

    [egs_left_context, egs_right_context,
     frames_per_eg_str, num_archives] = (
         common_train_lib.verify_egs_dir(egs_dir, feat_dim,
                                         ivector_dim, ivector_id,
                                         egs_left_context, egs_right_context,
                                         egs_left_context_initial,
                                         egs_right_context_final))
    assert(args.chunk_width == frames_per_eg_str)
    num_archives_expanded = num_archives * args.frame_subsampling_factor

    if (args.num_jobs_final > num_archives_expanded):
        raise Exception('num_jobs_final cannot exceed the '
                        'expanded number of archives')

    # copy the properties of the egs to dir for
    # use during decoding
    logger.info("Copying the properties from {0} to {1}".format(egs_dir, args.dir))
    common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)

    if ((args.stage <= -2) and (os.path.exists(args.dir+"/configs/init.config"))
            and (args.input_model is None)):
        logger.info('Computing the preconditioning matrix for input features')

        chain_lib.compute_preconditioning_matrix(
            args.dir, egs_dir, num_archives, run_opts,
            max_lda_jobs=args.max_lda_jobs,
            rand_prune=args.rand_prune)

    if (args.stage <= -1):
        logger.info("Preparing the initial acoustic model.")
        chain_lib.prepare_initial_acoustic_model(args.dir, run_opts,
                                                 input_model=args.input_model)

    with open("{0}/frame_subsampling_factor".format(args.dir), "w") as f:
        f.write(str(args.frame_subsampling_factor))

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_to_process = int(args.num_epochs * num_archives_expanded)
    num_archives_processed = 0
    num_iters = ((num_archives_to_process * 2)
                 / (args.num_jobs_initial + args.num_jobs_final))

    # If do_final_combination is True, compute the set of models_to_combine.
    # Otherwise, models_to_combine will be none.
    if args.do_final_combination:
        models_to_combine = common_train_lib.get_model_combine_iters(
            num_iters, args.num_epochs,
            num_archives_expanded, args.max_models_combine,
            args.num_jobs_final)
    else:
        models_to_combine = None

    min_deriv_time = None
    max_deriv_time_relative = None
    if args.deriv_truncate_margin is not None:
        min_deriv_time = -args.deriv_truncate_margin - model_left_context
        max_deriv_time_relative = \
           args.deriv_truncate_margin + model_right_context

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):
        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return
        current_num_jobs = int(0.5 + args.num_jobs_initial
                               + (args.num_jobs_final - args.num_jobs_initial)
                               * float(iter) / num_iters)

        if args.stage <= iter:
            model_file = "{dir}/{iter}.mdl".format(dir=args.dir, iter=iter)

            lrate = common_train_lib.get_learning_rate(iter, current_num_jobs,
                                                       num_iters,
                                                       num_archives_processed,
                                                       num_archives_to_process,
                                                       args.initial_effective_lrate,
                                                       args.final_effective_lrate)
            shrinkage_value = 1.0 - (args.proportional_shrink * lrate)
            if shrinkage_value <= 0.5:
                raise Exception("proportional-shrink={0} is too large, it gives "
                                "shrink-value={1}".format(args.proportional_shrink,
                                                          shrinkage_value))
            if args.shrink_value < shrinkage_value:
                shrinkage_value = (args.shrink_value
                                   if common_train_lib.should_do_shrinkage(
                                       iter, model_file,
                                       args.shrink_saturation_threshold)
                                   else shrinkage_value)

            percent = num_archives_processed * 100.0 / num_archives_to_process
            epoch = (num_archives_processed * args.num_epochs
                     / num_archives_to_process)
            shrink_info_str = ''
            if shrinkage_value != 1.0:
                shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value)
            logger.info("Iter: {0}/{1}    "
                        "Epoch: {2:0.2f}/{3:0.1f} ({4:0.1f}% complete)    "
                        "lr: {5:0.6f}    {6}".format(iter, num_iters - 1,
                                                     epoch, args.num_epochs,
                                                     percent,
                                                     lrate, shrink_info_str))

            chain_lib.train_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                egs_dir=egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=lrate,
                dropout_edit_string=common_train_lib.get_dropout_edit_string(
                    args.dropout_schedule,
                    float(num_archives_processed) / num_archives_to_process,
                    iter),
                train_opts=' '.join(args.train_opts),
                shrinkage_value=shrinkage_value,
                num_chunk_per_minibatch_str=args.num_chunk_per_minibatch,
                apply_deriv_weights=args.apply_deriv_weights,
                min_deriv_time=min_deriv_time,
                max_deriv_time_relative=max_deriv_time_relative,
                l2_regularize=args.l2_regularize,
                xent_regularize=args.xent_regularize,
                leaky_hmm_coefficient=args.leaky_hmm_coefficient,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shuffle_buffer_size=args.shuffle_buffer_size,
                frame_subsampling_factor=args.frame_subsampling_factor,
                run_opts=run_opts,
                backstitch_training_scale=args.backstitch_training_scale,
                backstitch_training_interval=args.backstitch_training_interval)

            if args.cleanup:
                # do a clean up everything but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(
                    args.dir, iter-2, num_iters, models_to_combine,
                    args.preserve_model_interval)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times, data] = (
                        nnet3_log_parse.generate_acc_logprob_report(
                            args.dir, "log-probability"))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs

    if args.stage <= num_iters:
        if args.do_final_combination:
            logger.info("Doing final combination to produce final.mdl")
            chain_lib.combine_models(
                dir=args.dir, num_iters=num_iters,
                models_to_combine=models_to_combine,
                num_chunk_per_minibatch_str=args.num_chunk_per_minibatch,
                egs_dir=egs_dir,
                leaky_hmm_coefficient=args.leaky_hmm_coefficient,
                l2_regularize=args.l2_regularize,
                xent_regularize=args.xent_regularize,
                run_opts=run_opts,
                max_objective_evaluations=args.max_objective_evaluations)
        else:
            logger.info("Copying the last-numbered model to final.mdl")
            common_lib.force_symlink("{0}.mdl".format(num_iters),
                                     "{0}/final.mdl".format(args.dir))
            common_lib.force_symlink("compute_prob_valid.{iter}.log"
                                     "".format(iter=num_iters-1),
                                     "{dir}/log/compute_prob_valid.final.log".format(
                                         dir=args.dir))

    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = args.remove_egs
        if args.egs_dir is not None:
            # this egs_dir was not created by this experiment so we will not
            # delete it
            remove_egs = False

        # leave the last-two-numbered models, for diagnostic reasons.
        common_train_lib.clean_nnet_dir(
            args.dir, num_iters - 1, egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs)

    # do some reporting
    [report, times, data] = nnet3_log_parse.generate_acc_logprob_report(
        args.dir, "log-probability")
    if args.email is not None:
        common_lib.send_mail(report, "Update : Expt {0} : "
                                     "complete".format(args.dir), args.email)

    with open("{dir}/accuracy.report".format(dir=args.dir), "w") as f:
        f.write(report)

    common_lib.execute_command("steps/info/chain_dir_info.pl "
                               "{0}".format(args.dir))
示例#8
0
def train(args, run_opts):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Check files
    chain_lib.check_for_required_files(
        args.feat_dir, args.tree_dir,
        args.lat_dir if args.egs_dir is None else None)

    # Copy phones.txt from tree-dir to dir. Later, steps/nnet3/decode.sh will
    # use it to check compatibility between training and decoding phone-sets.
    shutil.copy('{0}/phones.txt'.format(args.tree_dir), args.dir)

    # Set some variables.
    num_jobs = common_lib.get_number_of_jobs(args.tree_dir)
    feat_dim = common_lib.get_feat_dim(args.feat_dir)
    ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)
    ivector_id = common_lib.get_ivector_extractor_id(args.online_ivector_dir)

    # split the training data into parts for individual jobs
    # we will use the same number of jobs as that used for alignment
    common_lib.execute_command("utils/split_data.sh {0} {1}"
                               "".format(args.feat_dir, num_jobs))
    with open('{0}/num_jobs'.format(args.dir), 'w') as f:
        f.write(str(num_jobs))

    if args.input_model is None:
        config_dir = '{0}/configs'.format(args.dir)
        var_file = '{0}/vars'.format(config_dir)

        variables = common_train_lib.parse_generic_config_vars_file(var_file)
    else:
        # If args.input_model is specified, the model left and right contexts
        # are computed using input_model.
        variables = common_train_lib.get_input_model_info(args.input_model)

    # Set some variables.
    try:
        model_left_context = variables['model_left_context']
        model_right_context = variables['model_right_context']
    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    left_context = args.chunk_left_context + model_left_context
    right_context = args.chunk_right_context + model_right_context
    left_context_initial = (args.chunk_left_context_initial +
                            model_left_context
                            if args.chunk_left_context_initial >= 0 else -1)
    right_context_final = (args.chunk_right_context_final + model_right_context
                           if args.chunk_right_context_final >= 0 else -1)

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.
    if (args.stage <= -6):
        logger.info("Creating phone language-model")
        chain_lib.create_phone_lm(args.dir,
                                  args.tree_dir,
                                  run_opts,
                                  lm_opts=args.lm_opts)

    if (args.stage <= -5):
        logger.info("Creating denominator FST")
        shutil.copy('{0}/tree'.format(args.tree_dir), args.dir)
        chain_lib.create_denominator_fst(args.dir, args.tree_dir, run_opts)

    if ((args.stage <= -4)
            and os.path.exists("{0}/configs/init.config".format(args.dir))
            and (args.input_model is None)):
        logger.info("Initializing a basic network for estimating "
                    "preconditioning matrix")
        common_lib.execute_command("""{command} {dir}/log/nnet_init.log \
            nnet3-init --srand=-2 {dir}/configs/init.config \
            {dir}/init.raw""".format(command=run_opts.command, dir=args.dir))

    egs_left_context = left_context + args.frame_subsampling_factor // 2
    egs_right_context = right_context + args.frame_subsampling_factor // 2
    # note: the '+ args.frame_subsampling_factor / 2' is to allow for the
    # fact that we'll be shifting the data slightly during training to give
    # variety to the training data.
    egs_left_context_initial = (left_context_initial +
                                args.frame_subsampling_factor // 2
                                if left_context_initial >= 0 else -1)
    egs_right_context_final = (right_context_final +
                               args.frame_subsampling_factor // 2
                               if right_context_final >= 0 else -1)

    default_egs_dir = '{0}/egs'.format(args.dir)
    if ((args.stage <= -3) and args.egs_dir is None):
        logger.info("Generating egs")
        if (not os.path.exists("{0}/den.fst".format(args.dir))
                or not os.path.exists("{0}/normalization.fst".format(args.dir))
                or not os.path.exists("{0}/tree".format(args.dir))):
            raise Exception("Chain egs generation expects {0}/den.fst, "
                            "{0}/normalization.fst and {0}/tree "
                            "to exist.".format(args.dir))
        # this is where get_egs.sh is called.
        chain_lib.generate_chain_egs(
            dir=args.dir,
            data=args.feat_dir,
            lat_dir=args.lat_dir,
            egs_dir=default_egs_dir,
            left_context=egs_left_context,
            right_context=egs_right_context,
            left_context_initial=egs_left_context_initial,
            right_context_final=egs_right_context_final,
            run_opts=run_opts,
            left_tolerance=args.left_tolerance,
            right_tolerance=args.right_tolerance,
            frame_subsampling_factor=args.frame_subsampling_factor,
            alignment_subsampling_factor=args.alignment_subsampling_factor,
            frames_per_eg_str=args.chunk_width,
            srand=args.srand,
            egs_opts=args.egs_opts,
            cmvn_opts=args.cmvn_opts,
            online_ivector_dir=args.online_ivector_dir,
            frames_per_iter=args.frames_per_iter,
            stage=args.egs_stage)

    if args.egs_dir is None:
        egs_dir = default_egs_dir
    else:
        egs_dir = args.egs_dir

    [egs_left_context, egs_right_context, frames_per_eg_str,
     num_archives] = (common_train_lib.verify_egs_dir(
         egs_dir, feat_dim, ivector_dim, ivector_id, egs_left_context,
         egs_right_context, egs_left_context_initial, egs_right_context_final))
    assert (args.chunk_width == frames_per_eg_str)
    num_archives_expanded = num_archives * args.frame_subsampling_factor

    if (args.num_jobs_final > num_archives_expanded):
        raise Exception('num_jobs_final cannot exceed the '
                        'expanded number of archives')

    # copy the properties of the egs to dir for
    # use during decoding
    logger.info("Copying the properties from {0} to {1}".format(
        egs_dir, args.dir))
    common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)

    if not os.path.exists('{0}/valid_diagnostic.cegs'.format(egs_dir)):
        if (not os.path.exists('{0}/valid_diagnostic.scp'.format(egs_dir))):
            raise Exception('Neither {0}/valid_diagnostic.cegs nor '
                            '{0}/valid_diagnostic.scp exist.'
                            'This script expects one of them.'.format(egs_dir))
        use_multitask_egs = True
    else:
        use_multitask_egs = False

    if ((args.stage <= -2)
            and (os.path.exists(args.dir + "/configs/init.config"))
            and (args.input_model is None)):
        logger.info('Computing the preconditioning matrix for input features')

        chain_lib.compute_preconditioning_matrix(
            args.dir,
            egs_dir,
            num_archives,
            run_opts,
            max_lda_jobs=args.max_lda_jobs,
            rand_prune=args.rand_prune,
            use_multitask_egs=use_multitask_egs)

    if (args.stage <= -1):
        logger.info("Preparing the initial acoustic model.")
        chain_lib.prepare_initial_acoustic_model(args.dir,
                                                 run_opts,
                                                 input_model=args.input_model)

    with open("{0}/frame_subsampling_factor".format(args.dir), "w") as f:
        f.write(str(args.frame_subsampling_factor))

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_to_process = int(args.num_epochs * num_archives_expanded)
    num_archives_processed = 0
    num_iters = ((num_archives_to_process * 2) //
                 (args.num_jobs_initial + args.num_jobs_final))

    # If do_final_combination is True, compute the set of models_to_combine.
    # Otherwise, models_to_combine will be none.
    if args.do_final_combination:
        models_to_combine = common_train_lib.get_model_combine_iters(
            num_iters, args.num_epochs, num_archives_expanded,
            args.max_models_combine, args.num_jobs_final)
    else:
        models_to_combine = None

    min_deriv_time = None
    max_deriv_time_relative = None
    if args.deriv_truncate_margin is not None:
        min_deriv_time = -args.deriv_truncate_margin - model_left_context
        max_deriv_time_relative = \
           args.deriv_truncate_margin + model_right_context

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):
        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return
        current_num_jobs = int(0.5 + args.num_jobs_initial +
                               (args.num_jobs_final - args.num_jobs_initial) *
                               float(iter) / num_iters)

        if args.stage <= iter:
            model_file = "{dir}/{iter}.mdl".format(dir=args.dir, iter=iter)

            lrate = common_train_lib.get_learning_rate(
                iter, current_num_jobs, num_iters, num_archives_processed,
                num_archives_to_process, args.initial_effective_lrate,
                args.final_effective_lrate)
            shrinkage_value = 1.0 - (args.proportional_shrink * lrate)
            if shrinkage_value <= 0.5:
                raise Exception(
                    "proportional-shrink={0} is too large, it gives "
                    "shrink-value={1}".format(args.proportional_shrink,
                                              shrinkage_value))
            if args.shrink_value < shrinkage_value:
                shrinkage_value = (
                    args.shrink_value if common_train_lib.should_do_shrinkage(
                        iter, model_file,
                        args.shrink_saturation_threshold) else shrinkage_value)

            percent = num_archives_processed * 100.0 / num_archives_to_process
            epoch = (num_archives_processed * args.num_epochs /
                     num_archives_to_process)
            shrink_info_str = ''
            if shrinkage_value != 1.0:
                shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value)
            logger.info("Iter: {0}/{1}    "
                        "Epoch: {2:0.2f}/{3:0.1f} ({4:0.1f}% complete)    "
                        "lr: {5:0.6f}    {6}".format(iter, num_iters - 1,
                                                     epoch, args.num_epochs,
                                                     percent, lrate,
                                                     shrink_info_str))

            chain_lib.train_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                egs_dir=egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=lrate,
                dropout_edit_string=common_train_lib.get_dropout_edit_string(
                    args.dropout_schedule,
                    float(num_archives_processed) / num_archives_to_process,
                    iter),
                train_opts=' '.join(args.train_opts),
                shrinkage_value=shrinkage_value,
                num_chunk_per_minibatch_str=args.num_chunk_per_minibatch,
                apply_deriv_weights=args.apply_deriv_weights,
                min_deriv_time=min_deriv_time,
                max_deriv_time_relative=max_deriv_time_relative,
                l2_regularize=args.l2_regularize,
                xent_regularize=args.xent_regularize,
                leaky_hmm_coefficient=args.leaky_hmm_coefficient,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shuffle_buffer_size=args.shuffle_buffer_size,
                frame_subsampling_factor=args.frame_subsampling_factor,
                run_opts=run_opts,
                backstitch_training_scale=args.backstitch_training_scale,
                backstitch_training_interval=args.backstitch_training_interval,
                use_multitask_egs=use_multitask_egs)

            if args.cleanup:
                # do a clean up everything but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(args.dir, iter - 2, num_iters,
                                              models_to_combine,
                                              args.preserve_model_interval)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times,
                     data] = (nnet3_log_parse.generate_acc_logprob_report(
                         args.dir, "log-probability"))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs

    if args.stage <= num_iters:
        if args.do_final_combination:
            logger.info("Doing final combination to produce final.mdl")
            chain_lib.combine_models(
                dir=args.dir,
                num_iters=num_iters,
                models_to_combine=models_to_combine,
                num_chunk_per_minibatch_str=args.num_chunk_per_minibatch,
                egs_dir=egs_dir,
                leaky_hmm_coefficient=args.leaky_hmm_coefficient,
                l2_regularize=args.l2_regularize,
                xent_regularize=args.xent_regularize,
                run_opts=run_opts,
                max_objective_evaluations=args.max_objective_evaluations,
                use_multitask_egs=use_multitask_egs)
        else:
            logger.info("Copying the last-numbered model to final.mdl")
            common_lib.force_symlink("{0}.mdl".format(num_iters),
                                     "{0}/final.mdl".format(args.dir))
            chain_lib.compute_train_cv_probabilities(
                dir=args.dir,
                iter=num_iters,
                egs_dir=egs_dir,
                l2_regularize=args.l2_regularize,
                xent_regularize=args.xent_regularize,
                leaky_hmm_coefficient=args.leaky_hmm_coefficient,
                run_opts=run_opts,
                use_multitask_egs=use_multitask_egs)
            common_lib.force_symlink(
                "compute_prob_valid.{iter}.log"
                "".format(iter=num_iters),
                "{dir}/log/compute_prob_valid.final.log".format(dir=args.dir))

    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = args.remove_egs
        if args.egs_dir is not None:
            # this egs_dir was not created by this experiment so we will not
            # delete it
            remove_egs = False

        # leave the last-two-numbered models, for diagnostic reasons.
        common_train_lib.clean_nnet_dir(
            args.dir,
            num_iters - 1,
            egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs)

    # do some reporting
    [report, times, data
     ] = nnet3_log_parse.generate_acc_logprob_report(args.dir,
                                                     "log-probability")
    if args.email is not None:
        common_lib.send_mail(
            report, "Update : Expt {0} : "
            "complete".format(args.dir), args.email)

    with open("{dir}/accuracy.report".format(dir=args.dir), "w") as f:
        f.write(report)

    common_lib.execute_command("steps/info/chain_dir_info.pl "
                               "{0}".format(args.dir))
示例#9
0
def train(args, run_opts):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Check files
    files = ['{0}/feats.scp'.format(args.feat_dir), '{0}/fst.1.scp'.format(args.tree_dir),
             '{0}/final.mdl'.format(args.tree_dir), '{0}/tree'.format(args.tree_dir),
             '{0}/phone_lm.fst'.format(args.tree_dir),
             '{0}/num_jobs'.format(args.tree_dir)]
    for file in files:
        if not os.path.isfile(file):
            raise Exception('Expected {0} to exist.'.format(file))

    # Set some variables.
    num_jobs = common_lib.get_number_of_jobs(args.tree_dir)
    feat_dim = common_lib.get_feat_dim(args.feat_dir)
    ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)
    ivector_id = common_lib.get_ivector_extractor_id(args.online_ivector_dir)
    logger.info("feat-dim: {}, ivector-dim: {}".format(feat_dim, ivector_dim))

    # split the training data into parts for individual jobs
    # we will use the same number of jobs as that used for compiling FSTs
    common_lib.execute_command("utils/split_data.sh {0} {1}".format(
            args.feat_dir, num_jobs))
    shutil.copy('{0}/tree'.format(args.tree_dir), args.dir)
    shutil.copy('{0}/phones.txt'.format(args.tree_dir), args.dir)
    shutil.copy('{0}/phone_lm.fst'.format(args.tree_dir), args.dir)
    shutil.copy('{0}/0.trans_mdl'.format(args.tree_dir), args.dir)
    with open('{0}/num_jobs'.format(args.dir), 'w') as f:
        f.write(str(num_jobs))

    config_dir = '{0}/configs'.format(args.dir)
    var_file = '{0}/vars'.format(config_dir)

    variables = common_train_lib.parse_generic_config_vars_file(var_file)

    # Set some variables.
    try:
        model_left_context = variables['model_left_context']
        model_right_context = variables['model_right_context']
    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    left_context = args.chunk_left_context + model_left_context
    right_context = args.chunk_right_context + model_right_context
    left_context_initial = (args.chunk_left_context_initial + model_left_context if
                            args.chunk_left_context_initial >= 0 else -1)
    right_context_final = (args.chunk_right_context_final + model_right_context if
                           args.chunk_right_context_final >= 0 else -1)

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.

    if (args.stage <= -5):
        logger.info("Creating denominator FST")
        chain_lib.create_denominator_fst(args.dir, args.tree_dir, run_opts)

    if (args.stage <= -4):
        logger.info("Initializing a basic network...")
        common_lib.execute_command(
            """{command} {dir}/log/nnet_init.log \
                    nnet3-init --srand=-2 {dir}/configs/final.config \
                    {dir}/init.raw""".format(command=run_opts.command,
                                             dir=args.dir))

    egs_left_context = left_context + args.frame_subsampling_factor / 2
    egs_right_context = right_context + args.frame_subsampling_factor / 2
    egs_left_context_initial = (left_context_initial + args.frame_subsampling_factor / 2 if
                                left_context_initial >= 0 else -1)
    egs_right_context_final = (right_context_final + args.frame_subsampling_factor / 2 if
                               right_context_final >= 0 else -1)

    default_egs_dir = '{0}/egs'.format(args.dir)
    if (args.stage <= -3) and args.egs_dir is None:
        logger.info("Generating end-to-end egs...")
        common_lib.execute_command(
            """steps/nnet3/chain/e2e/get_egs_e2e.sh {egs_opts} \
                    --cmd "{command}" \
                    --cmvn-opts "{cmvn_opts}" \
                    --online-ivector-dir "{ivector_dir}" \
                    --left-context {left_context} \
                    --right-context {right_context} \
                    --left-context-initial {left_context_initial} \
                    --right-context-final {right_context_final} \
                    --frame-subsampling-factor {frame_subsampling_factor} \
                    --stage {stage} \
                    --frames-per-iter {frames_per_iter} \
                    --srand {srand} \
                    {data} {dir} {fst_dir} {egs_dir}""".format(
                        command=run_opts.command,
                        cmvn_opts=args.cmvn_opts if args.cmvn_opts is not None else '',
                        ivector_dir=(args.online_ivector_dir
                                     if args.online_ivector_dir is not None
                                     else ''),
                        left_context=egs_left_context,
                        right_context=egs_right_context,
                        left_context_initial=egs_left_context_initial,
                        right_context_final=egs_right_context_final,
                        frame_subsampling_factor=args.frame_subsampling_factor,
                        stage=args.egs_stage, frames_per_iter=args.frames_per_iter,
                        srand=args.srand,
                        data=args.feat_dir, dir=args.dir, fst_dir=args.tree_dir,
                        egs_dir=default_egs_dir,
                        egs_opts=args.egs_opts if args.egs_opts is not None else ''))

    if args.egs_dir is None:
        egs_dir = default_egs_dir
    else:
        egs_dir = args.egs_dir

    [egs_left_context, egs_right_context,
     frames_per_eg_str, num_archives] = (
        common_train_lib.verify_egs_dir(egs_dir, feat_dim,
                                        ivector_dim, ivector_id,
                                        egs_left_context, egs_right_context,
                                        egs_left_context_initial,
                                        egs_right_context_final))

    num_archives_expanded = num_archives * args.frame_subsampling_factor

    if (args.num_jobs_final > num_archives_expanded):
        raise Exception('num_jobs_final cannot exceed the '
                        'expanded number of archives')

    # copy the properties of the egs to dir for
    # use during decoding
    logger.info("Copying the properties from {0} to {1}".format(egs_dir, args.dir))
    common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)


    if (args.stage <= -1):
        logger.info("Preparing the initial acoustic model.")
        chain_lib.prepare_initial_acoustic_model(args.dir, run_opts)

    with open("{0}/frame_subsampling_factor".format(args.dir), "w") as f:
        f.write(str(args.frame_subsampling_factor))

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_to_process = int(args.num_epochs * num_archives_expanded)
    num_archives_processed = 0
    num_iters = ((num_archives_to_process * 2)
                 / (args.num_jobs_initial + args.num_jobs_final))

    models_to_combine = common_train_lib.get_model_combine_iters(
        num_iters, args.num_epochs,
        num_archives_expanded, args.max_models_combine,
        args.num_jobs_final)

    min_deriv_time = None
    max_deriv_time_relative = None
    if args.deriv_truncate_margin is not None:
        min_deriv_time = -args.deriv_truncate_margin - model_left_context
        max_deriv_time_relative = \
           args.deriv_truncate_margin + model_right_context

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):

        percent = num_archives_processed * 100.0 / num_archives_to_process
        epoch = (num_archives_processed * args.num_epochs
                 / num_archives_to_process)

        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return
        current_num_jobs = int(0.5 + args.num_jobs_initial
                               + (args.num_jobs_final - args.num_jobs_initial)
                               * float(iter) / num_iters)

        if args.stage <= iter:
            model_file = "{dir}/{iter}.mdl".format(dir=args.dir, iter=iter)

            lrate = common_train_lib.get_learning_rate(iter, current_num_jobs,
                                                       num_iters,
                                                       num_archives_processed,
                                                       num_archives_to_process,
                                                       args.initial_effective_lrate,
                                                       args.final_effective_lrate)
            shrinkage_value = 1.0 - (args.proportional_shrink * lrate)
            if shrinkage_value <= 0.5:
                raise Exception("proportional-shrink={0} is too large, it gives "
                                "shrink-value={1}".format(args.proportional_shrink,
                                                          shrinkage_value))
            if args.shrink_value < shrinkage_value:
                shrinkage_value = (args.shrink_value
                                   if common_train_lib.should_do_shrinkage(
                                        iter, model_file,
                                        args.shrink_saturation_threshold)
                                   else shrinkage_value)

            shrink_info_str = ''
            if shrinkage_value != 1.0:
                shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value)
            logger.info("Iter: {0}/{1}    "
                        "Epoch: {2:0.2f}/{3:0.1f} ({4:0.1f}% complete)    "
                        "lr: {5:0.6f}    {6}".format(iter, num_iters - 1,
                                                     epoch, args.num_epochs,
                                                     percent,
                                                     lrate, shrink_info_str))

            chain_lib.train_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                egs_dir=egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=lrate,
                dropout_edit_string=common_train_lib.get_dropout_edit_string(
                    args.dropout_schedule,
                    float(num_archives_processed) / num_archives_to_process,
                    iter),
                shrinkage_value=shrinkage_value,
                num_chunk_per_minibatch_str=args.num_chunk_per_minibatch,
                apply_deriv_weights=args.apply_deriv_weights,
                min_deriv_time=min_deriv_time,
                max_deriv_time_relative=max_deriv_time_relative,
                l2_regularize=args.l2_regularize,
                xent_regularize=args.xent_regularize,
                leaky_hmm_coefficient=args.leaky_hmm_coefficient,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shuffle_buffer_size=args.shuffle_buffer_size,
                frame_subsampling_factor=args.frame_subsampling_factor,
                run_opts=run_opts)


            if args.cleanup:
                # do a clean up everything but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(
                    args.dir, iter-2, num_iters, models_to_combine,
                    args.preserve_model_interval)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times, data] = (
                        nnet3_log_parse.generate_acc_logprob_report(
                            args.dir, "log-probability"))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs


    if args.stage <= num_iters:
        logger.info("Doing final combination to produce final.mdl")
        chain_lib.combine_models(
            dir=args.dir, num_iters=num_iters,
            models_to_combine=models_to_combine,
            num_chunk_per_minibatch_str=args.num_chunk_per_minibatch,
            egs_dir=egs_dir,
            leaky_hmm_coefficient=args.leaky_hmm_coefficient,
            l2_regularize=args.l2_regularize,
            xent_regularize=args.xent_regularize,
            run_opts=run_opts)


    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = args.remove_egs
        if args.egs_dir is not None:
            # this egs_dir was not created by this experiment so we will not
            # delete it
            remove_egs = False

        common_train_lib.clean_nnet_dir(
            args.dir, num_iters, egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs)

    # do some reporting
    [report, times, data] = nnet3_log_parse.generate_acc_logprob_report(
        args.dir, "log-probability")
    if args.email is not None:
        common_lib.send_mail(report, "Update : Expt {0} : "
                                     "complete".format(args.dir), args.email)

    with open("{dir}/accuracy.report".format(dir=args.dir), "w") as f:
        f.write(report)

    common_lib.execute_command("steps/info/chain_dir_info.pl "
                                 "{0}".format(args.dir))
示例#10
0
def train(args, run_opts, background_process_handler):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Set some variables.
    feat_dim = common_lib.get_feat_dim(args.feat_dir)
    ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)
    ivector_id = common_lib.get_ivector_extractor_id(args.online_ivector_dir)


    config_dir = '{0}/configs'.format(args.dir)
    var_file = '{0}/vars'.format(config_dir)

    variables = common_train_lib.parse_generic_config_vars_file(var_file)

    # Set some variables.
    try:
        model_left_context = variables['model_left_context']
        model_right_context = variables['model_right_context']
        # this is really the number of times we add layers to the network for
        # discriminative pretraining
        num_hidden_layers = variables['num_hidden_layers']
        add_lda = common_lib.str_to_bool(variables['add_lda'])
        include_log_softmax = common_lib.str_to_bool(
            variables['include_log_softmax'])
    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    left_context = args.chunk_left_context + model_left_context
    right_context = args.chunk_right_context + model_right_context
    left_context_initial = (args.chunk_left_context_initial + model_left_context if
                            args.chunk_left_context_initial >= 0 else -1)
    right_context_final = (args.chunk_right_context_final + model_right_context if
                           args.chunk_right_context_final >= 0 else -1)

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.

    if (args.stage <= -4):
        logger.info("Initializing a basic network")
        common_lib.run_job(
            """{command} {dir}/log/nnet_init.log \
                    nnet3-init --srand=-2 {dir}/configs/init.config \
                    {dir}/init.raw""".format(command=run_opts.command,
                                             dir=args.dir))

    default_egs_dir = '{0}/egs'.format(args.dir)
    if (args.stage <= -3) and args.egs_dir is None:
        logger.info("Generating egs")

        if args.use_dense_targets:
            target_type = "dense"
            try:
                num_targets = int(variables['num_targets'])
                if (common_lib.get_feat_dim_from_scp(args.targets_scp)
                        != num_targets):
                    raise Exception("Mismatch between num-targets provided to "
                                    "script vs configs")
            except KeyError as e:
                num_targets = -1
        else:
            target_type = "sparse"
            try:
                num_targets = int(variables['num_targets'])
            except KeyError as e:
                raise Exception("KeyError {0}: Variables need to be defined "
                                "in {1}".format(
                                    str(e), '{0}/configs'.format(args.dir)))

        train_lib.raw_model.generate_egs_using_targets(
            data=args.feat_dir, targets_scp=args.targets_scp,
            egs_dir=default_egs_dir,
            left_context=left_context,
            right_context=right_context,
            left_context_initial=left_context_initial,
            right_context_final=right_context_final,
            run_opts=run_opts,
            frames_per_eg_str=args.chunk_width,
            srand=args.srand,
            egs_opts=args.egs_opts,
            cmvn_opts=args.cmvn_opts,
            online_ivector_dir=args.online_ivector_dir,
            samples_per_iter=args.samples_per_iter,
            transform_dir=args.transform_dir,
            stage=args.egs_stage,
            target_type=target_type,
            num_targets=num_targets)

    if args.egs_dir is None:
        egs_dir = default_egs_dir
    else:
        egs_dir = args.egs_dir

    [egs_left_context, egs_right_context,
     frames_per_eg_str, num_archives] = (
        common_train_lib.verify_egs_dir(egs_dir, feat_dim,
                                        ivector_dim, ivector_id,
                                        left_context, right_context))
    if args.chunk_width != frames_per_eg_str:
        raise Exception("mismatch between --egs.chunk-width and the frames_per_eg "
                        "in the egs dir {0} vs {1}".format(args.chunk_width,
                                                     frames_per_eg_str))

    if (args.num_jobs_final > num_archives):
        raise Exception('num_jobs_final cannot exceed the number of archives '
                        'in the egs directory')

    # copy the properties of the egs to dir for
    # use during decoding
    common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)

    if (add_lda and args.stage <= -2):
        logger.info('Computing the preconditioning matrix for input features')

        train_lib.common.compute_preconditioning_matrix(
            args.dir, egs_dir, num_archives, run_opts,
            max_lda_jobs=args.max_lda_jobs,
            rand_prune=args.rand_prune)

    if (args.stage <= -1):
        logger.info("Preparing the initial network.")
        common_train_lib.prepare_initial_network(args.dir, run_opts)

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_to_process = int(args.num_epochs * num_archives)
    num_archives_processed = 0
    num_iters = ((num_archives_to_process * 2)
                 / (args.num_jobs_initial + args.num_jobs_final))

    models_to_combine = common_train_lib.verify_iterations(
        num_iters, args.num_epochs,
        num_hidden_layers, num_archives,
        args.max_models_combine, args.add_layers_period,
        args.num_jobs_final)

    def learning_rate(iter, current_num_jobs, num_archives_processed):
        return common_train_lib.get_learning_rate(iter, current_num_jobs,
                                                  num_iters,
                                                  num_archives_processed,
                                                  num_archives_to_process,
                                                  args.initial_effective_lrate,
                                                  args.final_effective_lrate)

    min_deriv_time = None
    max_deriv_time_relative = None
    if args.deriv_truncate_margin is not None:
        min_deriv_time = -args.deriv_truncate_margin - model_left_context
        max_deriv_time_relative = \
           args.deriv_truncate_margin + model_right_context

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):
        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return
        current_num_jobs = int(0.5 + args.num_jobs_initial
                               + (args.num_jobs_final - args.num_jobs_initial)
                               * float(iter) / num_iters)

        if args.stage <= iter:
            model_file = "{dir}/{iter}.raw".format(dir=args.dir, iter=iter)

            shrinkage_value = 1.0
            if args.shrink_value != 1.0:
                shrinkage_value = (args.shrink_value
                                   if common_train_lib.do_shrinkage(
                                        iter, model_file,
                                        args.shrink_saturation_threshold,
                                        get_raw_nnet_from_am=False)
                                   else 1
                                   )

            train_lib.common.train_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                egs_dir=egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=learning_rate(iter, current_num_jobs,
                                            num_archives_processed),
                dropout_edit_string=common_train_lib.get_dropout_edit_string(
                    args.dropout_schedule,
                    float(num_archives_processed) / num_archives_to_process,
                    iter),
                shrinkage_value=shrinkage_value,
                minibatch_size_str=args.num_chunk_per_minibatch,
                num_hidden_layers=num_hidden_layers,
                add_layers_period=args.add_layers_period,
                left_context=left_context,
                right_context=right_context,
                min_deriv_time=min_deriv_time,
                max_deriv_time_relative=max_deriv_time_relative,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shuffle_buffer_size=args.shuffle_buffer_size,
                run_opts=run_opts,
                get_raw_nnet_from_am=False,
                background_process_handler=background_process_handler)

            if args.cleanup:
                # do a clean up everythin but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(
                    args.dir, iter-2, num_iters, models_to_combine,
                    args.preserve_model_interval,
                    get_raw_nnet_from_am=False)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times, data] = (
                        nnet3_log_parse.generate_acc_logprob_report(args.dir))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs

    if args.stage <= num_iters:
        logger.info("Doing final combination to produce final.raw")
        train_lib.common.combine_models(
            dir=args.dir, num_iters=num_iters,
            models_to_combine=models_to_combine, egs_dir=egs_dir,
            left_context=left_context, right_context=right_context,
            minibatch_size_str=args.num_chunk_per_minibatch,
            run_opts=run_opts, chunk_width=args.chunk_width,
            background_process_handler=background_process_handler,
            get_raw_nnet_from_am=False,
            sum_to_one_penalty=args.combine_sum_to_one_penalty)

    if include_log_softmax and args.stage <= num_iters + 1:
        logger.info("Getting average posterior for purposes of "
                    "adjusting the priors.")
        train_lib.common.compute_average_posterior(
            dir=args.dir, iter='final', egs_dir=egs_dir,
            num_archives=num_archives,
            left_context=left_context, right_context=right_context,
            prior_subset_size=args.prior_subset_size, run_opts=run_opts,
            get_raw_nnet_from_am=False)

    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = args.remove_egs
        if args.egs_dir is not None:
            # this egs_dir was not created by this experiment so we will not
            # delete it
            remove_egs = False

        common_train_lib.clean_nnet_dir(
            nnet_dir=args.dir, num_iters=num_iters, egs_dir=egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs,
            get_raw_nnet_from_am=False)

    # do some reporting
    [report, times, data] = nnet3_log_parse.generate_acc_logprob_report(args.dir)
    if args.email is not None:
        common_lib.send_mail(report, "Update : Expt {0} : "
                                     "complete".format(args.dir), args.email)

    with open("{dir}/accuracy.report".format(dir=args.dir), "w") as f:
        f.write(report)

    common_lib.run_job("steps/info/nnet3_dir_info.pl "
                       "{0}".format(args.dir))
示例#11
0
文件: train_rnn.py 项目: LvHang/kaldi
def train(args, run_opts):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Copy phones.txt from ali-dir to dir. Later, steps/nnet3/decode.sh will
    # use it to check compatibility between training and decoding phone-sets.
    shutil.copy('{0}/phones.txt'.format(args.ali_dir), args.dir)

    # Set some variables.
    num_jobs = common_lib.get_number_of_jobs(args.ali_dir)
    feat_dim = common_lib.get_feat_dim(args.feat_dir)
    ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)
    ivector_id = common_lib.get_ivector_extractor_id(args.online_ivector_dir)

    # split the training data into parts for individual jobs
    # we will use the same number of jobs as that used for alignment
    common_lib.execute_command("utils/split_data.sh {0} {1}".format(
        args.feat_dir, num_jobs))
    shutil.copy('{0}/tree'.format(args.ali_dir), args.dir)

    with open('{0}/num_jobs'.format(args.dir), 'w') as f:
        f.write('{}'.format(num_jobs))

    config_dir = '{0}/configs'.format(args.dir)
    var_file = '{0}/vars'.format(config_dir)

    if args.input_model is None:
        config_dir = '{0}/configs'.format(args.dir)
        var_file = '{0}/vars'.format(config_dir)

        variables = common_train_lib.parse_generic_config_vars_file(var_file)
    else:
        # If args.input_model is specified, the model left and right contexts
        # are computed using input_model.
        variables = common_train_lib.get_input_model_info(args.input_model)

    # Set some variables.
    try:
        model_left_context = variables['model_left_context']
        model_right_context = variables['model_right_context']
    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    left_context = args.chunk_left_context + model_left_context
    right_context = args.chunk_right_context + model_right_context
    left_context_initial = (args.chunk_left_context_initial + model_left_context if
                            args.chunk_left_context_initial >= 0 else -1)
    right_context_final = (args.chunk_right_context_final + model_right_context if
                           args.chunk_right_context_final >= 0 else -1)

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.

    if (args.stage <= -5) and (args.input_model is None):
        logger.info("Initializing a basic network for estimating "
                    "preconditioning matrix")
        common_lib.execute_command(
            """{command} {dir}/log/nnet_init.log \
                    nnet3-init --srand=-2 {dir}/configs/init.config \
                    {dir}/init.raw""".format(command=run_opts.command,
                                             dir=args.dir))

    default_egs_dir = '{0}/egs'.format(args.dir)
    if args.stage <= -4 and args.egs_dir is None:
        logger.info("Generating egs")

        if args.feat_dir is None:
            raise Exception("--feat-dir option is required if you don't supply --egs-dir")

        train_lib.acoustic_model.generate_egs(
            data=args.feat_dir, alidir=args.ali_dir,
            egs_dir=default_egs_dir,
            left_context=left_context,
            right_context=right_context,
            left_context_initial=left_context_initial,
            right_context_final=right_context_final,
            run_opts=run_opts,
            frames_per_eg_str=args.chunk_width,
            srand=args.srand,
            egs_opts=args.egs_opts,
            cmvn_opts=args.cmvn_opts,
            online_ivector_dir=args.online_ivector_dir,
            samples_per_iter=args.samples_per_iter,
            stage=args.egs_stage)

    if args.egs_dir is None:
        egs_dir = default_egs_dir
    else:
        egs_dir = args.egs_dir

    [egs_left_context, egs_right_context,
     frames_per_eg_str, num_archives] = (
         common_train_lib.verify_egs_dir(egs_dir, feat_dim,
                                         ivector_dim, ivector_id,
                                         left_context, right_context,
                                         left_context_initial, right_context_final))
    if args.chunk_width != frames_per_eg_str:
        raise Exception("mismatch between --egs.chunk-width and the frames_per_eg "
                        "in the egs dir {0} vs {1}".format(args.chunk_width,
                                                           frames_per_eg_str))

    if args.num_jobs_final > num_archives:
        raise Exception('num_jobs_final cannot exceed the number of archives '
                        'in the egs directory')

    # copy the properties of the egs to dir for
    # use during decoding
    common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)

    if args.stage <= -3 and (args.input_model is None):
        logger.info('Computing the preconditioning matrix for input features')

        train_lib.common.compute_preconditioning_matrix(
            args.dir, egs_dir, num_archives, run_opts,
            max_lda_jobs=args.max_lda_jobs,
            rand_prune=args.rand_prune)

    if args.stage <= -2 and (args.input_model is None):
        logger.info("Computing initial vector for FixedScaleComponent before"
                    " softmax, using priors^{prior_scale} and rescaling to"
                    " average 1".format(
                        prior_scale=args.presoftmax_prior_scale_power))

        common_train_lib.compute_presoftmax_prior_scale(
            args.dir, args.ali_dir, num_jobs, run_opts,
            presoftmax_prior_scale_power=args.presoftmax_prior_scale_power)

    if args.stage <= -1:
        logger.info("Preparing the initial acoustic model.")
        train_lib.acoustic_model.prepare_initial_acoustic_model(
            args.dir, args.ali_dir, run_opts,
            input_model=args.input_model)

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_to_process = int(args.num_epochs * num_archives)
    num_archives_processed = 0
    num_iters = int((num_archives_to_process * 2) / (args.num_jobs_initial + args.num_jobs_final))

    # If do_final_combination is True, compute the set of models_to_combine.
    # Otherwise, models_to_combine will be none.
    if args.do_final_combination:
        models_to_combine = common_train_lib.get_model_combine_iters(
            num_iters, args.num_epochs,
            num_archives, args.max_models_combine,
            args.num_jobs_final)
    else:
        models_to_combine = None

    min_deriv_time = None
    max_deriv_time_relative = None
    if args.deriv_truncate_margin is not None:
        min_deriv_time = -args.deriv_truncate_margin - model_left_context
        max_deriv_time_relative = \
           args.deriv_truncate_margin + model_right_context

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):
        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return
        current_num_jobs = int(0.5 + args.num_jobs_initial
                               + (args.num_jobs_final - args.num_jobs_initial)
                               * float(iter) / num_iters)

        if args.stage <= iter:
            model_file = "{dir}/{iter}.mdl".format(dir=args.dir, iter=iter)


            lrate = common_train_lib.get_learning_rate(iter, current_num_jobs,
                                                       num_iters,
                                                       num_archives_processed,
                                                       num_archives_to_process,
                                                       args.initial_effective_lrate,
                                                       args.final_effective_lrate)

            shrinkage_value = 1.0 - (args.proportional_shrink * lrate)
            if shrinkage_value <= 0.5:
                raise Exception("proportional-shrink={0} is too large, it gives "
                                "shrink-value={1}".format(args.proportional_shrink,
                                                          shrinkage_value))
            if args.shrink_value < shrinkage_value:
                shrinkage_value = (args.shrink_value
                                   if common_train_lib.should_do_shrinkage(
                                           iter, model_file,
                                           args.shrink_saturation_threshold) else 1.0)

            percent = num_archives_processed * 100.0 / num_archives_to_process
            epoch = (num_archives_processed * args.num_epochs
                     / num_archives_to_process)
            shrink_info_str = ''
            if shrinkage_value != 1.0:
                shrink_info_str = 'shrink: {0:0.5f}'.format(shrinkage_value)
            logger.info("Iter: {0}/{1}    "
                        "Epoch: {2:0.2f}/{3:0.1f} ({4:0.1f}% complete)    "
                        "lr: {5:0.6f}    {6}".format(iter, num_iters - 1,
                                                     epoch, args.num_epochs,
                                                     percent,
                                                     lrate, shrink_info_str))

            train_lib.common.train_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                egs_dir=egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=lrate,
                dropout_edit_string=common_train_lib.get_dropout_edit_string(
                    args.dropout_schedule,
                    float(num_archives_processed) / num_archives_to_process,
                    iter),
                train_opts=' '.join(args.train_opts),
                shrinkage_value=shrinkage_value,
                minibatch_size_str=args.num_chunk_per_minibatch,
                min_deriv_time=min_deriv_time,
                max_deriv_time_relative=max_deriv_time_relative,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shuffle_buffer_size=args.shuffle_buffer_size,
                run_opts=run_opts,
                backstitch_training_scale=args.backstitch_training_scale,
                backstitch_training_interval=args.backstitch_training_interval,
                compute_per_dim_accuracy=args.compute_per_dim_accuracy)

            if args.cleanup:
                # do a clean up everythin but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(
                    args.dir, iter-2, num_iters, models_to_combine,
                    args.preserve_model_interval)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times, data] = (
                        nnet3_log_parse.generate_acc_logprob_report(args.dir))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs

    if args.stage <= num_iters:
        if args.do_final_combination:
            logger.info("Doing final combination to produce final.mdl")
            train_lib.common.combine_models(
                dir=args.dir, num_iters=num_iters,
                models_to_combine=models_to_combine, egs_dir=egs_dir,
                run_opts=run_opts,
                minibatch_size_str=args.num_chunk_per_minibatch,
                chunk_width=args.chunk_width,
                max_objective_evaluations=args.max_objective_evaluations,
                compute_per_dim_accuracy=args.compute_per_dim_accuracy)

    if args.stage <= num_iters + 1:
        logger.info("Getting average posterior for purposes of "
                    "adjusting the priors.")

        # If args.do_final_combination is true, we will use the combined model.
        # Otherwise, we will use the last_numbered model.
        real_iter = 'combined' if args.do_final_combination else num_iters
        avg_post_vec_file = train_lib.common.compute_average_posterior(
            dir=args.dir, iter=real_iter, egs_dir=egs_dir,
            num_archives=num_archives,
            prior_subset_size=args.prior_subset_size, run_opts=run_opts)

        logger.info("Re-adjusting priors based on computed posteriors")
        combined_or_last_numbered_model = "{dir}/{iter}.mdl".format(dir=args.dir,
                iter=real_iter)
        final_model = "{dir}/final.mdl".format(dir=args.dir)
        train_lib.common.adjust_am_priors(args.dir, combined_or_last_numbered_model,
                                          avg_post_vec_file, final_model,
                                          run_opts)

    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = args.remove_egs
        if args.egs_dir is not None:
            # this egs_dir was not created by this experiment so we will not
            # delete it
            remove_egs = False

        common_train_lib.clean_nnet_dir(
            nnet_dir=args.dir, num_iters=num_iters, egs_dir=egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs)

    # do some reporting
    [report, times, data] = nnet3_log_parse.generate_acc_logprob_report(args.dir)
    if args.email is not None:
        common_lib.send_mail(report, "Update : Expt {0} : "
                                     "complete".format(args.dir), args.email)

    with open("{dir}/accuracy.report".format(dir=args.dir), "w") as f:
        f.write(report)

    common_lib.execute_command("steps/info/nnet3_dir_info.pl "
                               "{0}".format(args.dir))
示例#12
0
def train(args, run_opts, background_process_handler):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Set some variables.
    feat_dim = common_lib.get_feat_dim(args.feat_dir)
    ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)

    config_dir = '{0}/configs'.format(args.dir)
    var_file = '{0}/vars'.format(config_dir)

    variables = common_train_lib.parse_generic_config_vars_file(var_file)

    # Set some variables.
    try:
        model_left_context = variables['model_left_context']
        model_right_context = variables['model_right_context']
        # this is really the number of times we add layers to the network for
        # discriminative pretraining
        num_hidden_layers = variables['num_hidden_layers']
        add_lda = common_lib.str_to_bool(variables['add_lda'])
        include_log_softmax = common_lib.str_to_bool(
            variables['include_log_softmax'])
    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    left_context = args.chunk_left_context + model_left_context
    right_context = args.chunk_right_context + model_right_context

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.

    if (args.stage <= -5):
        logger.info("Initializing a basic network")
        common_lib.run_job(
            """{command} {dir}/log/nnet_init.log \
                    nnet3-init --srand=-2 {dir}/configs/init.config \
                    {dir}/init.raw""".format(command=run_opts.command,
                                             dir=args.dir))

    default_egs_dir = '{0}/egs'.format(args.dir)
    if (args.stage <= -4) and args.egs_dir is None:
        logger.info("Generating egs")

        if args.use_dense_targets:
            target_type = "dense"
            try:
                num_targets = int(variables['num_targets'])
                if (common_lib.get_feat_dim_from_scp(args.targets_scp)
                        != num_targets):
                    raise Exception("Mismatch between num-targets provided to "
                                    "script vs configs")
            except KeyError as e:
                num_targets = -1
        else:
            target_type = "sparse"
            try:
                num_targets = int(variables['num_targets'])
            except KeyError as e:
                raise Exception("KeyError {0}: Variables need to be defined "
                                "in {1}".format(
                                    str(e), '{0}/configs'.format(args.dir)))

        train_lib.raw_model.generate_egs_using_targets(
            data=args.feat_dir, targets_scp=args.targets_scp,
            egs_dir=default_egs_dir,
            left_context=left_context, right_context=right_context,
            valid_left_context=left_context, valid_right_context=right_context,
            run_opts=run_opts,
            frames_per_eg=args.frames_per_eg,
            srand=args.srand,
            egs_opts=args.egs_opts,
            cmvn_opts=args.cmvn_opts,
            online_ivector_dir=args.online_ivector_dir,
            samples_per_iter=args.samples_per_iter,
            transform_dir=args.transform_dir,
            stage=args.egs_stage,
            target_type=target_type,
            num_targets=num_targets)

    if args.egs_dir is None:
        egs_dir = default_egs_dir
    else:
        egs_dir = args.egs_dir

    [egs_left_context, egs_right_context,
     frames_per_eg, num_archives] = (
        common_train_lib.verify_egs_dir(egs_dir, feat_dim, ivector_dim,
                                        left_context, right_context))
    assert(args.frames_per_eg == frames_per_eg)

    if (args.num_jobs_final > num_archives):
        raise Exception('num_jobs_final cannot exceed the number of archives '
                        'in the egs directory')

    # copy the properties of the egs to dir for
    # use during decoding
    common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)

    if (add_lda and args.stage <= -3):
        logger.info('Computing the preconditioning matrix for input features')

        train_lib.common.compute_preconditioning_matrix(
            args.dir, egs_dir, num_archives, run_opts,
            max_lda_jobs=args.max_lda_jobs,
            rand_prune=args.rand_prune)

    if (args.stage <= -1):
        logger.info("Preparing the initial network.")
        common_train_lib.prepare_initial_network(args.dir, run_opts)

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_expanded = num_archives * args.frames_per_eg
    num_archives_to_process = args.num_epochs * num_archives_expanded
    num_archives_processed = 0
    num_iters = ((num_archives_to_process * 2)
                 / (args.num_jobs_initial + args.num_jobs_final))

    models_to_combine = common_train_lib.verify_iterations(
        num_iters, args.num_epochs,
        num_hidden_layers, num_archives_expanded,
        args.max_models_combine, args.add_layers_period,
        args.num_jobs_final)

    def learning_rate(iter, current_num_jobs, num_archives_processed):
        return common_train_lib.get_learning_rate(iter, current_num_jobs,
                                                  num_iters,
                                                  num_archives_processed,
                                                  num_archives_to_process,
                                                  args.initial_effective_lrate,
                                                  args.final_effective_lrate)

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):
        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return
        current_num_jobs = int(0.5 + args.num_jobs_initial
                               + (args.num_jobs_final - args.num_jobs_initial)
                               * float(iter) / num_iters)

        if args.stage <= iter:
            train_lib.common.train_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                egs_dir=egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=learning_rate(iter, current_num_jobs,
                                            num_archives_processed),
                dropout_edit_string=common_lib.get_dropout_edit_string(
                    args.dropout_schedule,
                    float(num_archives_processed) / num_archives_to_process,
                    iter),
                minibatch_size=args.minibatch_size,
                frames_per_eg=args.frames_per_eg,
                num_hidden_layers=num_hidden_layers,
                add_layers_period=args.add_layers_period,
                left_context=left_context,
                right_context=right_context,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shuffle_buffer_size=args.shuffle_buffer_size,
                run_opts=run_opts,
                get_raw_nnet_from_am=False,
                background_process_handler=background_process_handler)

            if args.cleanup:
                # do a clean up everythin but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(
                    args.dir, iter-2, num_iters, models_to_combine,
                    args.preserve_model_interval,
                    get_raw_nnet_from_am=False)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times, data] = (
                        nnet3_log_parse.generate_accuracy_report(args.dir))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs

    if args.stage <= num_iters:
        logger.info("Doing final combination to produce final.raw")
        train_lib.common.combine_models(
            dir=args.dir, num_iters=num_iters,
            models_to_combine=models_to_combine, egs_dir=egs_dir,
            left_context=left_context, right_context=right_context,
            run_opts=run_opts,
            background_process_handler=background_process_handler,
            get_raw_nnet_from_am=False)

    if include_log_softmax and args.stage <= num_iters + 1:
        logger.info("Getting average posterior for purposes of "
                    "adjusting the priors.")
        train_lib.common.compute_average_posterior(
            dir=args.dir, iter='final', egs_dir=egs_dir,
            num_archives=num_archives,
            left_context=left_context, right_context=right_context,
            prior_subset_size=args.prior_subset_size, run_opts=run_opts,
            get_raw_nnet_from_am=False)

    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = args.remove_egs
        if args.egs_dir is not None:
            # this egs_dir was not created by this experiment so we will not
            # delete it
            remove_egs = False

        common_train_lib.clean_nnet_dir(
            nnet_dir=args.dir, num_iters=num_iters, egs_dir=egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs,
            get_raw_nnet_from_am=False)

    # do some reporting
    [report, times, data] = nnet3_log_parse.generate_accuracy_report(args.dir)
    if args.email is not None:
        common_lib.send_mail(report, "Update : Expt {0} : "
                                     "complete".format(args.dir), args.email)

    with open("{dir}/accuracy.report".format(dir=args.dir), "w") as f:
        f.write(report)

    common_lib.run_job("steps/info/nnet3_dir_info.pl "
                       "{0}".format(args.dir))
示例#13
0
def train(args, run_opts, background_process_handler):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Check files
    chain_lib.check_for_required_files(args.feat_dir, args.tree_dir,
                                       args.lat_dir)

    # Set some variables.
    num_jobs = common_lib.get_number_of_jobs(args.tree_dir)
    feat_dim = common_lib.get_feat_dim(args.feat_dir)
    ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)

    # split the training data into parts for individual jobs
    # we will use the same number of jobs as that used for alignment
    common_lib.split_data(args.feat_dir, num_jobs)
    shutil.copy('{0}/tree'.format(args.tree_dir), args.dir)
    with open('{0}/num_jobs'.format(args.dir), 'w') as f:
        f.write(str(num_jobs))

    config_dir = '{0}/configs'.format(args.dir)
    var_file = '{0}/vars'.format(config_dir)

    variables = common_train_lib.parse_generic_config_vars_file(var_file)

    # Set some variables.
    try:
        model_left_context = variables['model_left_context']
        model_right_context = variables['model_right_context']
        # this is really the number of times we add layers to the network for
        # discriminative pretraining
        num_hidden_layers = variables['num_hidden_layers']
    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    left_context = args.chunk_left_context + model_left_context
    right_context = args.chunk_right_context + model_right_context

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.
    if (args.stage <= -6):
        logger.info("Creating phone language-model")
        chain_lib.create_phone_lm(args.dir, args.tree_dir, run_opts,
                                  lm_opts=args.lm_opts)

    if (args.stage <= -5):
        logger.info("Creating denominator FST")
        chain_lib.create_denominator_fst(args.dir, args.tree_dir, run_opts)

    if (args.stage <= -4):
        logger.info("Initializing a basic network for estimating "
                    "preconditioning matrix")
        common_lib.run_kaldi_command(
            """{command} {dir}/log/nnet_init.log \
                    nnet3-init --srand=-2 {dir}/configs/init.config \
                    {dir}/init.raw""".format(command=run_opts.command,
                                             dir=args.dir))

    egs_left_context = left_context + args.frame_subsampling_factor/2
    egs_right_context = right_context + args.frame_subsampling_factor/2

    default_egs_dir = '{0}/egs'.format(args.dir)
    if (args.stage <= -3) and args.egs_dir is None:
        logger.info("Generating egs")
        # this is where get_egs.sh is called.
        chain_lib.generate_chain_egs(
            dir=args.dir, data=args.feat_dir,
            lat_dir=args.lat_dir, egs_dir=default_egs_dir,
            left_context=egs_left_context,
            right_context=egs_right_context,
            run_opts=run_opts,
            left_tolerance=args.left_tolerance,
            right_tolerance=args.right_tolerance,
            frame_subsampling_factor=args.frame_subsampling_factor,
            alignment_subsampling_factor=args.alignment_subsampling_factor,
            frames_per_eg=args.chunk_width,
            srand=args.srand,
            egs_opts=args.egs_opts,
            cmvn_opts=args.cmvn_opts,
            online_ivector_dir=args.online_ivector_dir,
            frames_per_iter=args.frames_per_iter,
            transform_dir=args.transform_dir,
            stage=args.egs_stage)

    if args.egs_dir is None:
        egs_dir = default_egs_dir
    else:
        egs_dir = args.egs_dir

    [egs_left_context, egs_right_context,
     frames_per_eg, num_archives] = (
        common_train_lib.verify_egs_dir(egs_dir, feat_dim, ivector_dim,
                                        egs_left_context, egs_right_context))
    assert(args.chunk_width == frames_per_eg)
    num_archives_expanded = num_archives * args.frame_subsampling_factor

    if (args.num_jobs_final > num_archives_expanded):
        raise Exception('num_jobs_final cannot exceed the '
                        'expanded number of archives')

    # copy the properties of the egs to dir for
    # use during decoding
    common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)

    if (args.stage <= -2):
        logger.info('Computing the preconditioning matrix for input features')

        chain_lib.compute_preconditioning_matrix(
            args.dir, egs_dir, num_archives, run_opts,
            max_lda_jobs=args.max_lda_jobs,
            rand_prune=args.rand_prune)

    if (args.stage <= -1):
        logger.info("Preparing the initial acoustic model.")
        chain_lib.prepare_initial_acoustic_model(args.dir, run_opts)

    with open("{0}/frame_subsampling_factor".format(args.dir), "w") as f:
        f.write(str(args.frame_subsampling_factor))

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_to_process = args.num_epochs * num_archives_expanded
    num_archives_processed = 0
    num_iters = ((num_archives_to_process * 2)
                 / (args.num_jobs_initial + args.num_jobs_final))

    models_to_combine = common_train_lib.verify_iterations(
        num_iters, args.num_epochs,
        num_hidden_layers, num_archives_expanded,
        args.max_models_combine, args.add_layers_period,
        args.num_jobs_final)

    def learning_rate(iter, current_num_jobs, num_archives_processed):
        return common_train_lib.get_learning_rate(iter, current_num_jobs,
                                                  num_iters,
                                                  num_archives_processed,
                                                  num_archives_to_process,
                                                  args.initial_effective_lrate,
                                                  args.final_effective_lrate)

    min_deriv_time = None
    max_deriv_time = None
    if args.deriv_truncate_margin is not None:
        min_deriv_time = -args.deriv_truncate_margin - model_left_context
        max_deriv_time = (args.chunk_width - 1 + args.deriv_truncate_margin
                          + model_right_context)

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):
        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return
        current_num_jobs = int(0.5 + args.num_jobs_initial
                               + (args.num_jobs_final - args.num_jobs_initial)
                               * float(iter) / num_iters)

        if args.stage <= iter:
            model_file = "{dir}/{iter}.mdl".format(dir=args.dir, iter=iter)
            shrinkage_value = 1.0
            if args.shrink_value != 1.0:
                shrinkage_value = (args.shrink_value
                                   if common_train_lib.do_shrinkage(
                                        iter, model_file,
                                        args.shrink_saturation_threshold)
                                   else 1
                                   )
            logger.info("On iteration {0}, learning rate is {1} and "
                        "shrink value is {2}.".format(
                            iter, learning_rate(iter, current_num_jobs,
                                                num_archives_processed),
                            shrinkage_value))

            chain_lib.train_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                egs_dir=egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=learning_rate(iter, current_num_jobs,
                                            num_archives_processed),
                shrinkage_value=shrinkage_value,
                num_chunk_per_minibatch=args.num_chunk_per_minibatch,
                num_hidden_layers=num_hidden_layers,
                add_layers_period=args.add_layers_period,
                left_context=left_context,
                right_context=right_context,
                apply_deriv_weights=args.apply_deriv_weights,
                min_deriv_time=min_deriv_time,
                max_deriv_time=max_deriv_time,
                l2_regularize=args.l2_regularize,
                xent_regularize=args.xent_regularize,
                leaky_hmm_coefficient=args.leaky_hmm_coefficient,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shuffle_buffer_size=args.shuffle_buffer_size,
                frame_subsampling_factor=args.frame_subsampling_factor,
                truncate_deriv_weights=args.truncate_deriv_weights,
                run_opts=run_opts,
                background_process_handler=background_process_handler)

            if args.cleanup:
                # do a clean up everythin but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(
                    args.dir, iter-2, num_iters, models_to_combine,
                    args.preserve_model_interval)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times, data] = (
                        nnet3_log_parse.generate_accuracy_report(
                            args.dir, "log-probability"))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs

    if args.stage <= num_iters:
        logger.info("Doing final combination to produce final.mdl")
        chain_lib.combine_models(
            dir=args.dir, num_iters=num_iters,
            models_to_combine=models_to_combine,
            num_chunk_per_minibatch=args.num_chunk_per_minibatch,
            egs_dir=egs_dir,
            left_context=left_context, right_context=right_context,
            leaky_hmm_coefficient=args.leaky_hmm_coefficient,
            l2_regularize=args.l2_regularize,
            xent_regularize=args.xent_regularize,
            run_opts=run_opts,
            background_process_handler=background_process_handler)

    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = args.remove_egs
        if args.egs_dir is not None:
            # this egs_dir was not created by this experiment so we will not
            # delete it
            remove_egs = False

        common_train_lib.clean_nnet_dir(
            args.dir, num_iters, egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs)

    # do some reporting
    [report, times, data] = nnet3_log_parse.generate_accuracy_report(
        args.dir, "log-probability")
    if args.email is not None:
        common_lib.send_mail(report, "Update : Expt {0} : "
                                     "complete".format(args.dir), args.email)

    with open("{dir}/accuracy.report".format(dir=args.dir), "w") as f:
        f.write(report)

    common_lib.run_kaldi_command("steps/info/nnet3_dir_info.pl "
                                 "{0}".format(args.dir))
示例#14
0
                frames_per_eg=args.frames_per_eg,
                
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shrinkage_value=shrinkage_value,
                shuffle_buffer_size=args.shuffle_buffer_size,
                run_opts=run_opts)

            
            # 删除两次迭代之前 并且 不在 modes_to_combine 中的 mdl
            if args.cleanup:
                # do a clean up everythin but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(
                    args.dir,                      # exp/nnet3/tdnn_sp
                    iter-2,                        # 删除两次迭代之前的mdl
                    num_iters,                     # 237
                    models_to_combine,             # set([224, 225, 226, , 237, 218, 219, 220, 221, 222, 223])
                    args.preserve_model_interval)  # 100


        # 已经处理的 archives  每次train 每个job都跑一个 archives, 每次有 current_num_jobs个 job并行.
        num_archives_processed = num_archives_processed + current_num_jobs



    # ======================= 训练完成 ========================
    if args.stage <= num_iters:
        if args.do_final_combination:
            logger.info("Doing final combination to produce final.mdl")
            train_lib.common.combine_models(
                dir=args.dir, num_iters=num_iters,
示例#15
0
def train(args, run_opts, background_process_handler):
    """ The main function for training.

    Args:
        args: a Namespace object with the required parameters
            obtained from the function process_args()
        run_opts: RunOpts object obtained from the process_args()
    """

    arg_string = pprint.pformat(vars(args))
    logger.info("Arguments for the experiment\n{0}".format(arg_string))

    # Check files
    chain_lib.check_for_required_files(args.feat_dir, args.tree_dir,
                                       args.lat_dir)

    # Set some variables.
    num_jobs = common_lib.get_number_of_jobs(args.tree_dir)
    feat_dim = common_lib.get_feat_dim(args.feat_dir)
    ivector_dim = common_lib.get_ivector_dim(args.online_ivector_dir)

    # split the training data into parts for individual jobs
    # we will use the same number of jobs as that used for alignment
    common_lib.split_data(args.feat_dir, num_jobs)
    shutil.copy('{0}/tree'.format(args.tree_dir), args.dir)
    with open('{0}/num_jobs'.format(args.dir), 'w') as f:
        f.write(str(num_jobs))

    config_dir = '{0}/configs'.format(args.dir)
    var_file = '{0}/vars'.format(config_dir)

    variables = common_train_lib.parse_generic_config_vars_file(var_file)

    # Set some variables.
    try:
        model_left_context = variables['model_left_context']
        model_right_context = variables['model_right_context']
        # this is really the number of times we add layers to the network for
        # discriminative pretraining
        num_hidden_layers = variables['num_hidden_layers']
    except KeyError as e:
        raise Exception("KeyError {0}: Variables need to be defined in "
                        "{1}".format(str(e), '{0}/configs'.format(args.dir)))

    left_context = args.chunk_left_context + model_left_context
    right_context = args.chunk_right_context + model_right_context

    # Initialize as "raw" nnet, prior to training the LDA-like preconditioning
    # matrix.  This first config just does any initial splicing that we do;
    # we do this as it's a convenient way to get the stats for the 'lda-like'
    # transform.
    if (args.stage <= -6):
        logger.info("Creating phone language-model")
        chain_lib.create_phone_lm(args.dir, args.tree_dir, run_opts,
                                  lm_opts=args.lm_opts)

    if (args.stage <= -5):
        logger.info("Creating denominator FST")
        chain_lib.create_denominator_fst(args.dir, args.tree_dir, run_opts)

    if (args.stage <= -4):
        logger.info("Initializing a basic network for estimating "
                    "preconditioning matrix")
        common_lib.run_kaldi_command(
            """{command} {dir}/log/nnet_init.log \
                    nnet3-init --srand=-2 {dir}/configs/init.config \
                    {dir}/init.raw""".format(command=run_opts.command,
                                             dir=args.dir))

    egs_left_context = left_context + args.frame_subsampling_factor/2
    egs_right_context = right_context + args.frame_subsampling_factor/2

    default_egs_dir = '{0}/egs'.format(args.dir)
    if (args.stage <= -3) and args.egs_dir is None:
        logger.info("Generating egs")
        # this is where get_egs.sh is called.
        chain_lib.generate_chain_egs(
            dir=args.dir, data=args.feat_dir,
            lat_dir=args.lat_dir, egs_dir=default_egs_dir,
            left_context=egs_left_context,
            right_context=egs_right_context,
            run_opts=run_opts,
            left_tolerance=args.left_tolerance,
            right_tolerance=args.right_tolerance,
            frame_subsampling_factor=args.frame_subsampling_factor,
            alignment_subsampling_factor=args.alignment_subsampling_factor,
            frames_per_eg=args.chunk_width,
            srand=args.srand,
            egs_opts=args.egs_opts,
            cmvn_opts=args.cmvn_opts,
            online_ivector_dir=args.online_ivector_dir,
            frames_per_iter=args.frames_per_iter,
            transform_dir=args.transform_dir,
            stage=args.egs_stage)

    if args.egs_dir is None:
        egs_dir = default_egs_dir
    else:
        egs_dir = args.egs_dir

    [egs_left_context, egs_right_context,
     frames_per_eg, num_archives] = (
        common_train_lib.verify_egs_dir(egs_dir, feat_dim, ivector_dim,
                                        egs_left_context, egs_right_context))
    assert(args.chunk_width == frames_per_eg)
    num_archives_expanded = num_archives * args.frame_subsampling_factor

    if (args.num_jobs_final > num_archives_expanded):
        raise Exception('num_jobs_final cannot exceed the '
                        'expanded number of archives')

    # copy the properties of the egs to dir for
    # use during decoding
    common_train_lib.copy_egs_properties_to_exp_dir(egs_dir, args.dir)

    if (args.stage <= -2):
        logger.info('Computing the preconditioning matrix for input features')

        chain_lib.compute_preconditioning_matrix(
            args.dir, egs_dir, num_archives, run_opts,
            max_lda_jobs=args.max_lda_jobs,
            rand_prune=args.rand_prune)

    if (args.stage <= -1):
        logger.info("Preparing the initial acoustic model.")
        chain_lib.prepare_initial_acoustic_model(args.dir, run_opts)

    with open("{0}/frame_subsampling_factor".format(args.dir), "w") as f:
        f.write(str(args.frame_subsampling_factor))

    # set num_iters so that as close as possible, we process the data
    # $num_epochs times, i.e. $num_iters*$avg_num_jobs) ==
    # $num_epochs*$num_archives, where
    # avg_num_jobs=(num_jobs_initial+num_jobs_final)/2.
    num_archives_to_process = args.num_epochs * num_archives_expanded
    num_archives_processed = 0
    num_iters = ((num_archives_to_process * 2)
                 / (args.num_jobs_initial + args.num_jobs_final))

    models_to_combine = common_train_lib.verify_iterations(
        num_iters, args.num_epochs,
        num_hidden_layers, num_archives_expanded,
        args.max_models_combine, args.add_layers_period,
        args.num_jobs_final)

    def learning_rate(iter, current_num_jobs, num_archives_processed):
        return common_train_lib.get_learning_rate(iter, current_num_jobs,
                                                  num_iters,
                                                  num_archives_processed,
                                                  num_archives_to_process,
                                                  args.initial_effective_lrate,
                                                  args.final_effective_lrate)

    min_deriv_time = None
    max_deriv_time = None
    if args.deriv_truncate_margin is not None:
        min_deriv_time = -args.deriv_truncate_margin - model_left_context
        max_deriv_time = (args.chunk_width - 1 + args.deriv_truncate_margin
                          + model_right_context)

    logger.info("Training will run for {0} epochs = "
                "{1} iterations".format(args.num_epochs, num_iters))

    for iter in range(num_iters):
        if (args.exit_stage is not None) and (iter == args.exit_stage):
            logger.info("Exiting early due to --exit-stage {0}".format(iter))
            return
        current_num_jobs = int(0.5 + args.num_jobs_initial
                               + (args.num_jobs_final - args.num_jobs_initial)
                               * float(iter) / num_iters)

        if args.stage <= iter:
            model_file = "{dir}/{iter}.mdl".format(dir=args.dir, iter=iter)
            shrinkage_value = 1.0
            if args.shrink_value != 1.0:
                shrinkage_value = (args.shrink_value
                                   if common_train_lib.do_shrinkage(
                                        iter, model_file,
                                        args.shrink_saturation_threshold)
                                   else 1
                                   )

            chain_lib.train_one_iteration(
                dir=args.dir,
                iter=iter,
                srand=args.srand,
                egs_dir=egs_dir,
                num_jobs=current_num_jobs,
                num_archives_processed=num_archives_processed,
                num_archives=num_archives,
                learning_rate=learning_rate(iter, current_num_jobs,
                                            num_archives_processed),
                dropout_edit_string=common_lib.get_dropout_edit_string(
                    args.dropout_schedule,
                    float(num_archives_processed) / num_archives_to_process,
                    iter),
                shrinkage_value=shrinkage_value,
                num_chunk_per_minibatch=args.num_chunk_per_minibatch,
                num_hidden_layers=num_hidden_layers,
                add_layers_period=args.add_layers_period,
                left_context=left_context,
                right_context=right_context,
                apply_deriv_weights=args.apply_deriv_weights,
                min_deriv_time=min_deriv_time,
                max_deriv_time=max_deriv_time,
                l2_regularize=args.l2_regularize,
                xent_regularize=args.xent_regularize,
                leaky_hmm_coefficient=args.leaky_hmm_coefficient,
                momentum=args.momentum,
                max_param_change=args.max_param_change,
                shuffle_buffer_size=args.shuffle_buffer_size,
                frame_subsampling_factor=args.frame_subsampling_factor,
                truncate_deriv_weights=args.truncate_deriv_weights,
                run_opts=run_opts,
                background_process_handler=background_process_handler)

            if args.cleanup:
                # do a clean up everythin but the last 2 models, under certain
                # conditions
                common_train_lib.remove_model(
                    args.dir, iter-2, num_iters, models_to_combine,
                    args.preserve_model_interval)

            if args.email is not None:
                reporting_iter_interval = num_iters * args.reporting_interval
                if iter % reporting_iter_interval == 0:
                    # lets do some reporting
                    [report, times, data] = (
                        nnet3_log_parse.generate_accuracy_report(
                            args.dir, "log-probability"))
                    message = report
                    subject = ("Update : Expt {dir} : "
                               "Iter {iter}".format(dir=args.dir, iter=iter))
                    common_lib.send_mail(message, subject, args.email)

        num_archives_processed = num_archives_processed + current_num_jobs

    if args.stage <= num_iters:
        logger.info("Doing final combination to produce final.mdl")
        chain_lib.combine_models(
            dir=args.dir, num_iters=num_iters,
            models_to_combine=models_to_combine,
            num_chunk_per_minibatch=args.num_chunk_per_minibatch,
            egs_dir=egs_dir,
            left_context=left_context, right_context=right_context,
            leaky_hmm_coefficient=args.leaky_hmm_coefficient,
            l2_regularize=args.l2_regularize,
            xent_regularize=args.xent_regularize,
            run_opts=run_opts,
            background_process_handler=background_process_handler)

    if args.cleanup:
        logger.info("Cleaning up the experiment directory "
                    "{0}".format(args.dir))
        remove_egs = args.remove_egs
        if args.egs_dir is not None:
            # this egs_dir was not created by this experiment so we will not
            # delete it
            remove_egs = False

        common_train_lib.clean_nnet_dir(
            args.dir, num_iters, egs_dir,
            preserve_model_interval=args.preserve_model_interval,
            remove_egs=remove_egs)

    # do some reporting
    [report, times, data] = nnet3_log_parse.generate_accuracy_report(
        args.dir, "log-probability")
    if args.email is not None:
        common_lib.send_mail(report, "Update : Expt {0} : "
                                     "complete".format(args.dir), args.email)

    with open("{dir}/accuracy.report".format(dir=args.dir), "w") as f:
        f.write(report)

    common_lib.run_kaldi_command("steps/info/nnet3_dir_info.pl "
                                 "{0}".format(args.dir))