def run(): parser = argparse.ArgumentParser(formatter_class=RawTextHelpFormatter) parser.add_argument('-s', '--seconds', nargs='?') args = parser.parse_args() if not args.seconds: # parser.print_help() # sys.exit(0) seconds = int(5) args.seconds = seconds # seconds = int(args.seconds) chunksize = 2**12 # 4096 channels = 2#int(config['channels']) # 1=mono, 2=stereo record_forever = False visualise_console = bool(config['mic.visualise_console']) visualise_plot = bool(config['mic.visualise_plot']) reader = MicrophoneReader(None) reader.start_recording(seconds=seconds, chunksize=chunksize, channels=channels) msg = ' * started recording..' print(colored(msg, attrs=['dark'])) while True: bufferSize = int(reader.rate / reader.chunksize * seconds) for i in range(0, bufferSize): nums = reader.process_recording() if visualise_console: msg = colored('%05d', attrs=['dark']) + colored(' %s', 'green') print(msg % visual_peak.calc(nums)) else: msg = 'processing %d of %d..' % (i, bufferSize) print(colored(msg, attrs=['dark'])) if not record_forever: break if visualise_plot: data = reader.get_recorded_data()[0] visual_plot.show(data) reader.stop_recording() msg = ' * recording has been stopped' print(colored(msg, attrs=['dark'])) def grouper(iterable, n, fillvalue=None): args = [iter(iterable)] * n liste = [list(filter(None, values)) for values in zip_longest(fillvalue=fillvalue, *args)] # print('liste :', liste) return liste data = reader.get_recorded_data() msg = ' * recorded %d samples' print(colored(msg, attrs=['dark']) % len(data[0])) # reader.save_recorded('test.wav') Fs = fingerprint.DEFAULT_FS channel_amount = len(data) result = set() matches = [] # print("matches :", matches) def find_matches(samples, Fs=fingerprint.DEFAULT_FS): hashes = fingerprint.fingerprint(samples, Fs=Fs) return return_matches(hashes) def return_matches(hashes): mapper = {} for hash, offset in hashes: mapper[hash.upper()] = offset values = mapper.keys() for split_values in grouper(values, 1000): # @todo move to db related files query = """ SELECT upper(hash), song_fk, offset FROM fingerprints WHERE upper(hash) IN (%s) """ query = query % ','.join('?' * len(split_values)) # print('query:', query) # print('split_values', split_values) x = db.executeAll(query, split_values) # print('X', x) matches_found = len(x) if matches_found > 0: msg = '** found %d hash matches (step %d/%d)' print(colored(msg, 'green') % ( matches_found, len(split_values), len(values) )) else: msg = '** not matches found (step %d/%d)' print(colored(msg, 'red') % ( len(split_values), len(values) )) for hash, sid, offset in x: # (sid, db_offset - song_sampled_offset) # print('hash', hash) # print('sid', sid) # print('offset', offset) # print(' mapper[hash]', mapper[hash]) # yield (sid, offset - mapper[hash]) yield (sid, mapper[hash]) for channeln, channel in enumerate(data): # TODO: Remove prints or change them into optional logging. msg = 'fingerprinting channel %d/%d' print(colored(msg, attrs=['dark']) % (channeln+1, channel_amount)) matches.extend(find_matches(channel)) msg = 'finished channel %d/%d, got %d hashes' print(colored(msg, attrs=['dark']) % ( channeln+1, channel_amount, len(matches) )) def align_matches(matches): diff_counter = {} largest = 0 largest_count = 0 song_id = -1 for tup in matches: sid, diff = tup if diff not in diff_counter: diff_counter[diff] = {} if sid not in diff_counter[diff]: diff_counter[diff][sid] = 0 diff_counter[diff][sid] += 1 if diff_counter[diff][sid] > largest_count: largest = diff largest_count = diff_counter[diff][sid] song_id = sid songM = db.get_song_by_id(song_id) nseconds = round(float(largest) / fingerprint.DEFAULT_FS * fingerprint.DEFAULT_WINDOW_SIZE * fingerprint.DEFAULT_OVERLAP_RATIO, 5) return { "SONG_ID" : song_id, "SONG_NAME" : songM[1], "CONFIDENCE" : largest_count, "OFFSET" : int(largest), "OFFSET_SECS" : nseconds } total_matches_found = len(matches) print('') if total_matches_found > 0: msg = ' ** totally found %d hash matches' print(colored(msg, 'green') % total_matches_found) song = align_matches(matches) #print(song['SONG_NAME']) msg = ' => song: %s (id=%d)\n' msg += 'offset: %d (%d secs)\n' msg += 'confidence: %d' print(colored(msg, 'green') % ( song['SONG_NAME'], song['SONG_ID'], song['OFFSET'], song['OFFSET_SECS'], song['CONFIDENCE'] )) # Regex pour virer le .MP3 pattern = re.compile(r"[A-Z][a-z]*") result = pattern.search(song['SONG_NAME']) print(result.group()) return song else: msg = {'error':'Not matches found at all'} print(colored(msg['error'], 'red')) return msg #if __name__ == '__main__': # run()
reader.start_recording(seconds=seconds, chunksize=chunksize, channels=channels) msg = ' * started recording..' print colored(msg, attrs=['dark']) while True: bufferSize = int(reader.rate / reader.chunksize * seconds) for i in range(0, bufferSize): nums = reader.process_recording() if visualise_console: msg = colored(' %05d', attrs=['dark']) + colored(' %s', 'green') print msg % visual_peak.calc(nums) else: msg = ' processing %d of %d..' % (i, bufferSize) print colored(msg, attrs=['dark']) if not record_forever: break if visualise_plot: data = reader.get_recorded_data()[0] visual_plot.show(data) reader.stop_recording() msg = ' * recording has been stopped' print colored(msg, attrs=['dark'])
def run_recognition(): config = get_config() # Set up logging handlers = [] if bool(config["log.console_out"]): handlers.append(logging.StreamHandler()) if bool(config["log.file_out"]): handlers.append(logging.FileHandler("microphone_rec.log")) logger = logging.basicConfig( handlers=handlers, format=config["log.format"], level=config["log.level"], ) db = SqliteDatabase() parser = argparse.ArgumentParser(formatter_class=RawTextHelpFormatter) parser.add_argument("-s", "--seconds", nargs="?") args = parser.parse_args() if not args.seconds: parser.print_help() sys.exit(0) seconds = int(args.seconds) chunksize = 2**12 # 4096 channels = int(config["channels"]) # 1=mono, 2=stereo record_forever = False save_recorded = bool(config["mic.save_recorded"]) visualise_console = bool(config["mic.visualise_console"]) visualise_plot = bool(config["mic.visualise_plot"]) reader = MicrophoneReader() reader.start_recording(seconds=seconds, chunksize=chunksize, channels=channels) msg = " * started recording.." logger.info(msg) # print(colored(msg, attrs=["dark"])) while True: bufferSize = int(reader.rate / reader.chunksize * seconds) for i in range(0, bufferSize): nums = reader.process_recording() if visualise_console: msg = colored(" %05d", attrs=["dark"]) + colored( " %s", "green") logger.info(msg, visual_peak.calc(nums)) # print(msg % visual_peak.calc(nums)) else: msg = " processing %d of %d.." % (i, bufferSize) logger.info(msg) # print(colored(msg, attrs=["dark"])) if not record_forever: break if visualise_plot: data = reader.get_recorded_data()[0] visual_plot.show(data) reader.stop_recording() msg = " * recording has been stopped" logger.info(msg) # print(colored(msg, attrs=["dark"])) data = reader.get_recorded_data() msg = " * recorded %d samples" logger.info(msg, len(data[0])) # print(colored(msg, attrs=["dark"]) % len(data[0])) if save_recorded: reader.save_recorded("test.wav") Fs = fingerprint.DEFAULT_FS channel_amount = len(data) matches = [] for channeln, channel in enumerate(data): msg = " fingerprinting channel %d/%d" logger.info(msg, channeln + 1, channel_amount) # print(colored(msg, attrs=["dark"]) % (channeln + 1, channel_amount)) matches.extend(find_matches(db, channel, logger, Fs)) msg = " finished channel %d/%d, got %d hashes" logger.info(msg, channeln + 1, channel_amount, len(matches)) # print( # colored(msg, attrs=["dark"]) # % (channeln + 1, channel_amount, len(matches)) # ) print_match_results(db, matches, logger)