def RunReRank(config, FileData): print("4 Create Query DataList") genqueries = GenerateQueryClass.GenerateQueries() #print(FileData) reRankQueries = genqueries.generateQueriesExcelData( FileData, config["collection"], config["requestHandler"], config["solrFeatureStoreName"], config["efiParams"], config["QueryColums"]) print("5 Running Solr queries to extract features") solrcmd = ExcuteSolrCommand.ExcuteSolr() fvGenerator = solrcmd.generateTrainingData(reRankQueries, config["host"], config["port"], config) formatter = libsvm_formatter.LibSvmFormatter() formatter.processQueryDocFeatureVector(fvGenerator, config["trainingFile"]) print("6 Training model using '" + config["trainingLibraryLocation"] + " " + config["trainingLibraryOptions"] + "'") libsvm_formatter.trainLibSvm(config["trainingLibraryLocation"], config["trainingLibraryOptions"], config["trainingFile"], config["trainedModelFile"]) print("7 Converting trained model (" + config["trainedModelFile"] + ") to solr model (" + config["solrModelFile"] + ")") formatter.convertLibSvmModelToLtrModel(config["trainedModelFile"], config["solrModelFile"], config["solrModelName"], config["solrFeatureStoreName"]) print("8 Uploading model (" + config["solrModelFile"] + ") to Solr") solrcmd.uploadModel(config["collection"], config["host"], config["port"], config["solrModelFile"], config["solrModelName"]) print("------------------------END----------------------------")
def main(argv=None): if argv is None: argv = sys.argv parser = OptionParser(usage="usage: %prog [options] ", version="%prog 1.0") parser.add_option('-c', '--config', dest='configFile', help='File of configuration for the test') (options, args) = parser.parse_args() if options.configFile == None: parser.print_help() return 1 with open(options.configFile) as configFile: config = json.load(configFile) print "Uploading features (" + config["solrFeaturesFile"] + ") to Solr" setupSolr(config["collection"], config["host"], config["port"], config["solrFeaturesFile"], config["solrFeatureStoreName"]) print "Converting user queries (" + config[ "userQueriesFile"] + ") into Solr queries for feature extraction" reRankQueries = generateQueries(config["userQueriesFile"], config["collection"], config["requestHandler"], config["solrFeatureStoreName"], config["efiParams"]) print "Running Solr queries to extract features" fvGenerator = generateTrainingData(reRankQueries, config["host"], config["port"]) formatter = libsvm_formatter.LibSvmFormatter() formatter.processQueryDocFeatureVector(fvGenerator, config["trainingFile"]) print "Training model using '" + config[ "trainingLibraryLocation"] + " " + config[ "trainingLibraryOptions"] + "'" libsvm_formatter.trainLibSvm(config["trainingLibraryLocation"], config["trainingLibraryOptions"], config["trainingFile"], config["trainedModelFile"]) print "Converting trained model (" + config[ "trainedModelFile"] + ") to solr model (" + config[ "solrModelFile"] + ")" formatter.convertLibSvmModelToLtrModel(config["trainedModelFile"], config["solrModelFile"], config["solrModelName"], config["solrFeatureStoreName"]) print "Uploading model (" + config["solrModelFile"] + ") to Solr" uploadModel(config["collection"], config["host"], config["port"], config["solrModelFile"], config["solrModelName"])
def main(argv=None): if argv is None: argv = sys.argv parser = OptionParser(usage="usage: %prog [options] ", version="%prog 1.0") parser.add_option('-c', '--config', dest='configFile', help='File of configuration for the test') (options, args) = parser.parse_args() if options.configFile == None: parser.print_help() return 1 with open(options.configFile) as configFile: config = json.load(configFile) print "Uploading feature space to Solr" setupSolr(config) print "Generating feature extraction Solr queries" reRankQueries = generateQueries(config) print "Extracting features" fvGenerator = generateTrainingData(reRankQueries, config) formatter = libsvm_formatter.LibSvmFormatter() formatter.processQueryDocFeatureVector(fvGenerator, config["trainingFile"]) print "Training ranksvm model" libsvm_formatter.trainLibSvm(config["trainingLibraryLocation"], config["trainingFile"]) print "Converting ranksvm model to solr model" formatter.convertLibSvmModelToLtrModel( config["trainingFile"] + ".model", config["solrModelFile"], config["solrModelName"]) print "Uploading model to solr" uploadModel(config["collection"], config["host"], config["port"], config["solrModelFile"])
def main(argv=None): if argv is None: argv = sys.argv parser = OptionParser(usage="usage: %prog [options] ", version="%prog 1.0") parser.add_option('-c', '--config', dest='configFile', help='File of configuration for the test') (options, args) = parser.parse_args() if options.configFile == None: parser.print_help() return 1 with open(options.configFile) as configFile: config = json.load(configFile) print "Uploading features ("+config["solrFeaturesFile"]+") to Solr" setupSolr(config["collection"], config["host"], config["port"], config["solrFeaturesFile"], config["solrFeatureStoreName"]) print "Converting user queries ("+config["userQueriesFile"]+") into Solr queries for feature extraction" reRankQueries = generateQueries(config["userQueriesFile"], config["collection"], config["requestHandler"], config["solrFeatureStoreName"], config["efiParams"]) print "Running Solr queries to extract features" fvGenerator = generateTrainingData(reRankQueries, config["host"], config["port"]) formatter = libsvm_formatter.LibSvmFormatter(); formatter.processQueryDocFeatureVector(fvGenerator,config["trainingFile"]); print "Training model using '"+config["trainingLibraryLocation"]+" "+config["trainingLibraryOptions"]+"'" libsvm_formatter.trainLibSvm(config["trainingLibraryLocation"],config["trainingLibraryOptions"],config["trainingFile"],config["trainedModelFile"]) print "Converting trained model ("+config["trainedModelFile"]+") to solr model ("+config["solrModelFile"]+")" formatter.convertLibSvmModelToLtrModel(config["trainedModelFile"], config["solrModelFile"], config["solrModelName"], config["solrFeatureStoreName"]) print "Uploading model ("+config["solrModelFile"]+") to Solr" uploadModel(config["collection"], config["host"], config["port"], config["solrModelFile"], config["solrModelName"])
def main(argv=None): if argv is None: argv = sys.argv parser = OptionParser(usage="usage: %prog [options] ", version="%prog 1.0") parser.add_option('-c', '--config', dest='configFile', help='File of configuration for the test') (options, args) = parser.parse_args() if options.configFile == None: parser.print_help() return 1 with open(options.configFile) as configFile: config = json.load(configFile) print "Uploading feature space to Solr" setupSolr(config) print "Generating feature extraction Solr queries" reRankQueries = generateQueries(config) print "Extracting features" fvGenerator = generateTrainingData(reRankQueries, config); formatter = libsvm_formatter.LibSvmFormatter(); formatter.processQueryDocFeatureVector(fvGenerator,config["trainingFile"]); print "Training ranksvm model" libsvm_formatter.trainLibSvm(config["trainingLibraryLocation"],config["trainingFile"]) print "Converting ranksvm model to solr model" formatter.convertLibSvmModelToLtrModel(config["trainingFile"] + ".model", config["solrModelFile"], config["solrModelName"]) print "Uploading model to solr" uploadModel(config["collection"], config["host"], config["port"], config["solrModelFile"])