示例#1
0
def inverse_render_model(points: np.ndarray, sgrid: np.ndarray, lib):
    # wait for implementing
    #print("InverseRenderModel")
    try:
        x = points[:, 0]
    except IndexError:
        print(points.shape[0], points.shape[1])

    y = points[:, 1]
    z = points[:, 2]
    # Fistly, we get the centroid, then translate the points
    centroid_x = np.sum(x) / points.shape[0]
    centroid_y = np.sum(y) / points.shape[0]
    centroid_z = np.sum(z) / points.shape[0]
    centroid = np.array([centroid_x, centroid_y, centroid_z])
    points = points.astype(np.float)
    points -= centroid

    # After normalization, compute the distance between the sphere and points

    radius = np.sqrt(points[:, 0]**2 + points[:, 1]**2 + points[:, 2]**2)
    # dist = 1 - (1 / np.max(radius)) * radius

    # Projection
    from lie_learn.spaces import S2
    radius = np.repeat(radius, 3).reshape(-1, 3)
    points_on_sphere = points / radius
    # ssgrid = sgrid.reshape(-1, 3)
    # phi, theta = S2.change_coordinates(ssgrid, p_from='C', p_to='S')
    out = S2.change_coordinates(points_on_sphere, p_from='C', p_to='S')

    phi = out[..., 0]
    theta = out[..., 1]

    phi = phi
    theta = theta % (np.pi * 2)

    # Interpolate
    b = sgrid.shape[0] / 2  # bandwidth
    # By computing the m,n, we can find
    # the neighbours on the sphere
    m = np.trunc((phi - np.pi / (4 * b)) / (np.pi / (2 * b)))
    m = m.astype(int)
    n = np.trunc(theta / (np.pi / b))
    n = n.astype(int)

    dist_im, center_grid, east_grid, south_grid, southeast_grid = interpolate(
        m=m,
        n=n,
        sgrid=sgrid,
        points_on_sphere=points_on_sphere,
        radius=radius)
    dot_img, cross_img = angle(m=m, n=n, sgrid=sgrid, dist_im=dist_im, lib=lib)
    #dist_im=dist_im.reshape(-1,1)

    #wait for validation
    im = np.stack((dist_im, dot_img, cross_img), axis=0)

    return im
示例#2
0
def make_sgrid(b):

    theta, phi = S2.meshgrid(b=b, grid_type='Driscoll-Healy')
    sgrid = S2.change_coordinates(np.c_[theta[..., None], phi[..., None]],
                                  p_from='S',
                                  p_to='C')
    sgrid = sgrid.reshape((-1, 3))

    return sgrid
示例#3
0
def make_sgrid_(b):
    theta = np.linspace(0, m.pi, num=b)
    phi = np.linspace(0, 2 * m.pi, num=b)
    theta_m, phi_m = np.meshgrid(theta, phi)
    sgrid = S2.change_coordinates(np.c_[theta_m[..., None], phi_m[..., None]],
                                  p_from='S',
                                  p_to='C')
    sgrid = sgrid.reshape((-1, 3))

    return sgrid
示例#4
0
    def make_sgrid(b):
        from lie_learn.spaces import S2

        theta, phi = S2.meshgrid(b=b, grid_type='SOFT')
        sgrid = S2.change_coordinates(np.c_[theta[..., None], phi[..., None]],
                                      p_from='S',
                                      p_to='C')
        sgrid = sgrid.reshape((-1, 3))

        return (theta, phi), sgrid
示例#5
0
    def make_sgrid(b, alpha, beta, gamma, grid_type):
        theta, phi = S2.meshgrid(b=b, grid_type=grid_type)
        sgrid = S2.change_coordinates(np.c_[theta[..., None], phi[..., None]],
                                      p_from='S',
                                      p_to='C')
        sgrid = sgrid.reshape((-1, 3))

        R = mesh_op.rotmat(alpha, beta, gamma, hom_coord=False)
        sgrid = np.einsum('ij,nj->ni', R, sgrid)

        return sgrid
示例#6
0
def make_sgrid(b, alpha, beta, gamma):
    from lie_learn.spaces import S2

    theta, phi = S2.meshgrid(b=b, grid_type='SOFT')
    sgrid = S2.change_coordinates(np.c_[theta[..., None], phi[..., None]], p_from='S', p_to='C')
    sgrid = sgrid.reshape((-1, 3))

    R = rotmat(alpha, beta, gamma, hom_coord=False)
    sgrid = np.einsum('ij,nj->ni', R, sgrid)

    return sgrid
示例#7
0
def get_projection_grid(b, grid_type="Driscoll-Healy"):
    """
    returns the spherical grid in euclidean
    coordinates, where the sphere's center is moved
    to (0, 0, 1)
    """
    theta, phi = S2.meshgrid(b=b, grid_type=grid_type)
    grid = S2.change_coordinates(np.c_[theta[..., None], phi[..., None]],
                                 p_from='S',
                                 p_to='C')
    grid = grid.reshape((-1, 3)).astype(np.float32)
    return grid
示例#8
0
def spherical_voxel_optimized(points: np.ndarray, size_bandwidth: int, size_radial_divisions: int,
                              radius_support: float, do_random_sampling: bool, num_random_points: int) \
        -> Tuple[np.ndarray, np.ndarray]:
    """Compute spherical voxel using the C++ code.

    Compute Spherical Voxel signal as defined in:
    Pointwise Rotation-Invariant Network withAdaptive Sampling and 3D Spherical Voxel Convolution.
    Yang You, Yujing Lou, Qi Liu, Yu-Wing Tai, Weiming Wang, Lizhuang Ma and Cewu Lu.
    AAAI 2020.

    :param points: the points to convert.
    :param size_bandwidth: alpha and beta bandwidth.
    :param size_radial_divisions: the number of bins along radial dimension.
    :param radius_support: the radius used to compute the points in the support.
    :param do_random_sampling: if true a subset of random points will be used to compute the spherical voxel.
    :param num_random_points: the number of points to keep if do_random_sampling is true.

    :return: A tuple containing:
        The spherical voxel, shape(size_radial_divisions, 2 * size_bandwidth, 2 * size_bandwidth).
        The points used to compute the signal normalized according the the farthest point.
    """
    if do_random_sampling:
        min_limit = 1 if points.shape[0] > 1 else 0
        indices_random = np.random.randint(min_limit, points.shape[0], num_random_points)
        points = points[indices_random]

    pts_norm = np.linalg.norm(points, axis=1)
    # Scale points to fit unit sphere
    pts_normed = points / pts_norm[:, None]
    pts_normed = np.clip(pts_normed, -1, 1)

    pts_s2_coord = S2.change_coordinates(pts_normed, p_from='C', p_to='S')
    # Convert to spherical voxel indices
    pts_s2_coord[:, 0] *= 2 * size_bandwidth / np.pi  # [0, pi]
    pts_s2_coord[:, 1] *= size_bandwidth / np.pi
    pts_s2_coord[:, 1][pts_s2_coord[:, 1] < 0] += 2 * size_bandwidth

    # Adaptive sampling factor
    daas_weights = np.sin(np.pi * (2 * np.arange(2 * size_bandwidth) + 1) / 4 / size_bandwidth).astype(np.float32)
    voxel = np.asarray(sv.compute(pts_on_s2=pts_s2_coord,
                                  pts_norm=pts_norm,
                                  size_bandwidth=size_bandwidth,
                                  size_radial_divisions=size_radial_divisions,
                                  radius_support=radius_support,
                                  daas_weights=daas_weights))
    pts_normed = points / np.max(pts_norm)
    return voxel.astype(np.float32), pts_normed.astype(np.float32)
示例#9
0
    def __getitem__(self, index):
        b = self.bw
        pts = np.array(self.pts[index])

        # randomly sample points
        sub_idx = np.random.randint(0, pts.shape[0], 2048)
        pts = pts[sub_idx]
        if self.aug:
            rot = rnd_rot()
            pts = np.einsum('ij,nj->ni', rot, pts)
            pts += np.random.rand(3)[None, :] * 0.05
            pts = np.einsum('ij,nj->ni', rot.T, pts)

        segs = np.array(self.segs[index])
        segs = segs[sub_idx]
        labels = self.labels[index]

        pts_norm = np.linalg.norm(pts, axis=1)
        pts_normed = pts / pts_norm[:, None]
        rand_rot = rnd_rot() if self.rand_rot else np.eye(3)
        rotated_pts_normed = np.clip(pts_normed @ rand_rot, -1, 1)

        pts_s2 = S2.change_coordinates(rotated_pts_normed,
                                       p_from='C',
                                       p_to='S')
        pts_s2[:, 0] *= 2 * b / np.pi  # [0, pi]
        pts_s2[:, 1] *= b / np.pi
        pts_s2[:, 1][pts_s2[:, 1] < 0] += 2 * b

        pts_s2_float = pts_s2

        # N * 3
        pts_so3 = np.stack([
            pts_norm * 2 - 1, pts_s2_float[:, 1] /
            (2 * b - 1) * 2 - 1, pts_s2_float[:, 0] / (2 * b - 1) * 2 - 1
        ],
                           axis=1)
        pts_so3 = np.clip(pts_so3, -1, 1)

        features = np.asarray(
            compute(pts_s2_float, np.linalg.norm(pts, axis=1), 2 * b, b,
                    np.sin(np.pi * (2 * np.arange(2 * b) + 1) / 4 / b)))
        features = np.moveaxis(features, [0, 1, 2], [2, 0, 1])[None]

        return features.astype(np.float32), pts_so3.astype(
            np.float32), segs.astype(np.int64), pts @ rand_rot, labels.astype(
                np.int64)
示例#10
0
文件: dataset.py 项目: ttaa9/PRIN
    def __getitem__(self, index):
        b = hyper.BANDWIDTH_IN
        pts = np.array(self.pts[index])

        # randomly sample points
        sub_idx = np.random.randint(0, pts.shape[0],  hyper.N_PTCLOUD)
        pts = pts[sub_idx]
        if self.aug:
            rot = rnd_rot()
            pts = np.einsum('ij,nj->ni', rot, pts)
            pts += np.random.rand(3)[None, :] * 0.05
            pts = np.einsum('ij,nj->ni', rot.T, pts)
        segs = np.array(self.segs[index])
        segs = segs[sub_idx]
        labels = self.labels[index]

        pts_norm = np.linalg.norm(pts, axis=1)
        pts_normed = pts / pts_norm[:, None]
        rand_rot = rnd_rot() if self.rand_rot else np.eye(3)
        rotated_pts_normed = np.clip(pts_normed @ rand_rot, -1, 1)

        pts_s2 = S2.change_coordinates(rotated_pts_normed, p_from='C', p_to='S')
        pts_s2[:, 0] *= 2 * b / np.pi  # [0, pi]
        pts_s2[:, 1] *= b / np.pi
        pts_s2[:, 1][pts_s2[:, 1] < 0] += 2 * b

        pts_s2_float = pts_s2

        # N * 3
        pts_so3 = np.stack([pts_norm * 2 - 1, pts_s2_float[:, 1] / (2 * b - 1) * 2 - 1, pts_s2_float[:, 0] / (2 * b - 1) * 2 - 1], axis=1)
        pts_so3 = np.clip(pts_so3, -1, 1)

        # one hundred times speed up !
        features = np.asarray(compute(pts_s2_float, np.linalg.norm(pts, axis=1), hyper.R_IN, b, np.sin(np.pi * (2 * np.arange(2 * b) + 1) / 4 / b)))
    
        print('SSS', type(pts), pts.shape, pts_so3.shape, features.shape) # 2048 x 3, 2048 x 3, 64 x 64 x 64
        print('Mins/maxs/avg pts', pts.min(0), pts.max(0), pts.mean(0))
        print('Mins/maxs p so3ts', pts_so3.min(0), pts_so3.max(0))

        return features.astype(np.float32), pts_so3.astype(np.float32), segs.astype(np.int64), pts @ rand_rot, labels.astype(np.int64)
示例#11
0
    def __getitem__(self, index):
        b = hyper.BANDWIDTH_IN
        pts = np.array(self.pts[index])

        # randomly sample points
        sub_idx = np.random.randint(0, pts.shape[0], hyper.N_PTCLOUD)
        pts = pts[sub_idx]
        if self.aug:
            rot = rnd_rot()
            np.einsum('ij,nj->ni', rot, pts)
            pts += np.random.rand(3)[None, :] * 0.05
            np.einsum('ij,nj->ni', rot.T, pts)
        segs = np.array(self.segs[index])
        segs = segs[sub_idx]
        labels = self.labels[index]

        pts_norm = np.linalg.norm(pts, axis=1)
        pts_normed = pts / pts_norm[:, None]
        rand_rot = rnd_rot() if self.rand_rot else np.eye(3)
        rotated_pts_normed = np.clip(pts_normed @ rand_rot, -1, 1)

        pts_s2 = S2.change_coordinates(rotated_pts_normed,
                                       p_from='C',
                                       p_to='S')
        pts_s2[:, 0] *= 2 * b / np.pi  # [0, pi]
        pts_s2[:, 1] *= b / np.pi
        pts_s2[:, 1][pts_s2[:, 1] < 0] += 2 * b

        pts_s2_float = pts_s2
        pts_s2 = (pts_s2 + 0.5).astype(np.int)
        pts_s2[:, 0] = np.clip(pts_s2[:, 0], 0, 2 * b - 1)
        pts_s2[:, 1] = np.clip(pts_s2[:, 1], 0, 2 * b - 1)  # [0, 2pi]

        # N * 3
        pts_so3 = np.stack([
            pts_norm * 2 - 1, pts_s2_float[:, 1] /
            (2 * b - 1) * 2 - 1, pts_s2_float[:, 0] / (2 * b - 1) * 2 - 1
        ],
                           axis=1)
        pts_so3 = np.clip(pts_so3, -1, 1)

        # cache data
        try:
            if self.cache_dir is None:
                raise FileNotFoundError
            features = np.load(
                os.path.join(self.cache_dir, 'features%d.npy' % index))
        except (OSError, FileNotFoundError):
            features = []
            interval = 1. / hyper.R_IN

            dist = np.linalg.norm(pts, axis=1)

            # adaptive sampling
            wt = np.sin(np.pi * (2 * np.arange(2 * b) + 1) / 4 / b)

            # TODO: rewrite this in an efficient way
            for i in range(hyper.R_IN):
                idx = (dist < (i + 2) * interval) & (dist > i * interval)
                pts_idx = pts_s2[idx]
                pts_idx_float = pts_s2_float[idx]
                im = np.zeros([2 * b, 2 * b], np.float32)
                for beta in range(2 * b):
                    filt = (pts_idx[:, 0] == beta)
                    for alpha in range(2 * b):
                        filt_alpha = filt & (
                            pts_idx_float[:, 1] > alpha - 1. / 2 / wt[beta]
                        ) & (pts_idx_float[:, 1] < alpha + 1. / 2 / wt[beta])
                        if not np.any(filt_alpha):
                            continue
                        im[beta,
                           alpha] = (1 - np.abs(dist[idx][filt_alpha] -
                                                (i + 1) * interval) / interval
                                     ).sum() / np.count_nonzero(filt_alpha)
                features.append(im)
            features = np.stack(features, axis=0)
            if self.cache_dir is not None:
                np.save(os.path.join(self.cache_dir, 'features%d.npy' % index),
                        features)

        return features, pts_so3.astype(np.float32), segs.astype(
            np.int64), pts @ rand_rot, labels.astype(np.int64)
示例#12
0
def inverse_render_model(points: np.ndarray, sgrid: np.ndarray):
    # wait for implementing
    print("Aloha")

    x = points[:, 0]
    y = points[:, 1]
    z = points[:, 2]
    # Fistly, we get the centroid, then translate the points
    centroid_x = np.sum(x) / points.shape[0]
    centroid_y = np.sum(y) / points.shape[0]
    centroid_z = np.sum(z) / points.shape[0]
    centroid = np.array([centroid_x, centroid_y, centroid_z])
    points = points.astype(np.float)
    points -= centroid

    # After normalization, compute the distance between the sphere and points

    radius = np.sqrt(points[:, 0] ** 2 + points[:, 1] ** 2 + points[:, 2] ** 2)
    # dist = 1 - (1 / np.max(radius)) * radius

    # Projection
    from lie_learn.spaces import S2
    radius = np.repeat(radius, 3).reshape(-1, 3)
    points_on_sphere = points / radius
    # ssgrid = sgrid.reshape(-1, 3)
    # phi, theta = S2.change_coordinates(ssgrid, p_from='C', p_to='S')
    out = S2.change_coordinates(points_on_sphere, p_from='C', p_to='S')

    phi = out[..., 0]
    theta = out[..., 1]

    phi = phi
    theta = theta % (np.pi * 2)

    # Interpolate
    b = sgrid.shape[0] / 2  # bandwidth
    # By computing the m,n, we can find
    # the neighbours on the sphere
    m = np.trunc((phi - np.pi / (4 * b)) / (np.pi / (2 * b)))
    m = m.astype(int)
    n = np.trunc(theta / (np.pi / b))
    n = n.astype(int)

    dist_im, center_grid, east_grid, south_grid, southeast_grid = interpolate(m=m, n=n, sgrid=sgrid,
                                                                              points_on_sphere=points_on_sphere,
                                                                              radius=radius)
    coef, intercept,center_points =angle(m=m,n=n,sgrid=sgrid,dist_im=dist_im)
    # utilizing linear regression to create a plane

    # use a mask to avoid the index out of the boundary
    """
    mask_m = m - 1 >= 0
    mask = mask_m
    m = m[mask]
    n = n[mask]
    """

    # =======================================================================================
    fig = plt.figure()
    grid = make_sgrid(bandwidth, 0, 0, 0)
    grid = grid.reshape((-1, 3))

    xx = grid[:, 0]
    yy = grid[:, 1]
    zz = grid[:, 2]
    xx = xx.reshape(-1, 1)
    yy = yy.reshape(-1, 1)
    zz = zz.reshape(-1, 1)
    ax = Axes3D(fig)
    ax.scatter(0, 0, 0)

    ax.scatter(points[:, 0], points[:, 1], points[:, 2])
    ax.scatter(points_on_sphere[:, 0], points_on_sphere[:, 1], points_on_sphere[:, 2])

    ax.scatter(center_grid[:, 0], center_grid[:, 1], center_grid[:, 2])
    ax.scatter(east_grid[:, 0], east_grid[:, 1], east_grid[:, 2])
    ax.scatter(south_grid[:, 0], south_grid[:, 1], south_grid[:, 2])
    ax.scatter(southeast_grid[:, 0], southeast_grid[:, 1], southeast_grid[:, 2])
    # ax.scatter(xx, yy, zz)
    # plt.legend()

    # draw line
    ax = fig.gca(projection='3d')
    zero = np.zeros(points_on_sphere.shape[0])
    ray_x = np.stack((zero, points_on_sphere[:, 0]), axis=1).reshape(-1, 2)
    ray_y = np.stack((zero, points_on_sphere[:, 1]), axis=1).reshape(-1, 2)
    ray_z = np.stack((zero, points_on_sphere[:, 2]), axis=1).reshape(-1, 2)
    for index in range(points_on_sphere.shape[0]):
        ax.plot(ray_x[index], ray_y[index], ray_z[index])

    # draw plane
    for index in range(center_points.shape[0]):
        X = np.arange(center_points[index, 0] - 0.05, center_points[index, 0] + 0.05, 0.01)
        Y = np.arange(center_points[index, 1] - 0.05, center_points[index, 1] + 0.05, 0.01)
        X, Y = np.meshgrid(X, Y)
        a1 = coef[index, 0]
        a2 = coef[index, 1]
        b = intercept[index]
        Z = a1 * X + a2 * Y + b
        surf = ax.plot_surface(X, Y, Z)

    plt.show()
    im = dist_im
    return im
 def f1a(xs):
     xc = S2.change_coordinates(coords=xs, p_from='S', p_to='C')
     return xc[..., 0]**2 * xc[..., 1] - 1.4 * xc[..., 2] * xc[
         ..., 1]**3 + xc[..., 1] - xc[..., 2]**2 + 2.