示例#1
0
def test_perturb():
    C = SO3.exp(0.25 * np.pi * torch.ones(3))
    C_copy = copy.deepcopy(C)
    phi = torch.Tensor([0.1, 0.2, 0.3])
    C.perturb(phi)
    assert utils.allclose(C.as_matrix(),
                          (SO3.exp(phi).dot(C_copy)).as_matrix())
示例#2
0
def test_chordal_squared_loss_equality():
    print('Equality of quaternion and rotation matrix chordal loss...')
    C1 = SO3.exp(torch.randn(1000, 3, dtype=torch.double)).as_matrix()
    C2 = SO3.exp(torch.randn(1000, 3, dtype=torch.double)).as_matrix()

    q1 = rotmat_to_quat(C1)
    q2 = rotmat_to_quat(C2)

    assert (allclose(rotmat_frob_squared_norm_loss(C1, C2),
                     quat_chordal_squared_loss(q1, q2)))
    print('All passed.')
示例#3
0
def test_rot_angles():
    print('Rotation angles...')
    C1 = SO3.exp(torch.randn(100, 3, dtype=torch.double))
    C2 = SO3.exp(torch.randn(100, 3, dtype=torch.double))

    angles_1 = (C1.dot(C2.inv())).log().norm(dim=1) * (180. / np.pi)
    angles_2 = quat_angle_diff(rotmat_to_quat(C1.as_matrix()),
                               rotmat_to_quat(C2.as_matrix()),
                               units='deg',
                               reduce=False)
    angles_3 = rotmat_angle_diff(C1.as_matrix(), C2.as_matrix(), reduce=False)
    assert (allclose(angles_1, angles_2))
    assert (allclose(angles_1, angles_3))
    print('All passed.')
示例#4
0
def test_perturb_batch():
    C = SO3.exp(torch.Tensor([[1, 2, 3], [4, 5, 6]]))
    C_copy1 = copy.deepcopy(C)
    C_copy2 = copy.deepcopy(C)

    phi = torch.Tensor([0.1, 0.2, 0.3])
    C_copy1.perturb(phi)
    assert utils.allclose(C_copy1.as_matrix(),
                          (SO3.exp(phi).dot(C)).as_matrix())

    phis = torch.Tensor([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]])
    C_copy2.perturb(phis)
    assert utils.allclose(C_copy2.as_matrix(),
                          (SO3.exp(phis).dot(C)).as_matrix())
示例#5
0
    def se3_to_SE3(self, f2f_x, f2f_r):
        batch_size, seq_size, _ = f2f_x.shape

        f2g_q = torch.zeros((batch_size, seq_size, 4), dtype=f2f_x.dtype, device=f2f_x.device)
        f2g_x = torch.zeros((batch_size, seq_size, 3), dtype=f2f_x.dtype, device=f2f_x.device)

        for b in range(batch_size):
            R_prev = torch.zeros((3, 3), dtype=f2f_x.dtype, device=f2f_x.device)
            R_prev[:] = torch.eye(3, dtype=f2f_x.dtype, device=f2f_x.device)
            t_prev = torch.zeros((3), dtype=f2f_x.dtype, device=f2f_x.device)

            for s in range(0, seq_size):
                t_cur = f2f_x[b, s]
                #q_cur = spatial.euler_to_rotation_matrix (f2f_r[b, s])
                w_cur = f2f_r[b, s]
                R_cur = SO3.exp(w_cur).as_matrix() # spatial.quaternion_to_rotation_matrix(q_cur)

                if not torch.isclose(torch.det(R_cur), torch.FloatTensor([1.]).to(self.device)).all():
                    raise ValueError("Det error:\nR\n{}\nq:\n{}".format(R_cur, w_cur))

                t_prev = torch.matmul(R_prev, t_cur) + t_prev
                R_prev = torch.matmul(R_prev, R_cur)

                if not torch.isclose(torch.det(R_prev), torch.FloatTensor([1.]).to(self.device)).all():
                    raise ValueError("Det error:\nR\n{}".format(R_prev))
                f2g_q[b, s] = SO3.from_matrix(R_prev, normalize=True).to_quaternion()
                f2g_x[b, s] = t_prev
        return f2g_x, f2g_q
def gen_sim_data_beachball(N_rotations,
                           N_matches_per_rotation,
                           sigma,
                           factors,
                           dtype=torch.double):
    ##Simulation
    #Create a random rotation
    C = SO3_torch.exp(torch.randn(N_rotations, 3, dtype=dtype)).as_matrix()
    #Create two sets of vectors (normalized to unit l2 norm)
    x_1 = torch.randn(3, N_rotations * N_matches_per_rotation, dtype=dtype)
    x_1 = x_1 / x_1.norm(dim=0, keepdim=True)

    region_masks = [
        (x_1[0] < 0.) & (x_1[1] < 0.), (x_1[0] >= 0.) & (x_1[1] < 0.),
        (x_1[0] < 0.) & (x_1[1] >= 0.), (x_1[0] >= 0.) & (x_1[1] >= 0.)
    ]

    noise = torch.zeros_like(x_1)
    for r_i, region in enumerate(region_masks):
        noise[:, region] = factors[r_i] * sigma * torch.randn_like(
            noise[:, region])

    x_1 = x_1.view(3, N_rotations, N_matches_per_rotation).transpose(0, 1)
    noise = noise.view(3, N_rotations, N_matches_per_rotation).transpose(0, 1)

    #Rotate and add noise
    x_2 = C.bmm(x_1) + noise
    return C, x_1, x_2
def gen_sim_data_fast(N_rotations,
                      N_matches_per_rotation,
                      sigma,
                      max_rotation_angle=None,
                      dtype=torch.double):
    ##Simulation
    #Create a random rotation
    axis = torch.randn(N_rotations, 3, dtype=dtype)
    axis = axis / axis.norm(dim=1, keepdim=True)
    if max_rotation_angle:
        max_angle = max_rotation_angle * np.pi / 180.
    else:
        max_angle = np.pi

    angle = max_angle * torch.rand(N_rotations, 1)

    C = SO3_torch.exp(angle * axis).as_matrix()
    if N_rotations == 1:
        C = C.unsqueeze(dim=0)
    #Create two sets of vectors (normalized to unit l2 norm)
    x_1 = torch.randn(N_rotations, 3, N_matches_per_rotation, dtype=dtype)
    x_1 = x_1 / x_1.norm(dim=1, keepdim=True)
    #Rotate and add noise
    noise = sigma * torch.randn_like(x_1)
    x_2 = C.bmm(x_1) + noise

    return C, x_1, x_2
示例#8
0
def test_180_quat():
    a = torch.randn(25, 3).to(torch.float64)
    a = a / a.norm(dim=1, keepdim=True)
    angle = (150) * (np.pi / 180.)
    aa = a * angle
    C = SO3.exp(aa).as_matrix()
    print(rotmat_to_quat(C))
示例#9
0
文件: filter.py 项目: zzzzzjh/lwoi
    def h_imu(self, u):
        """
		Transforms the imu measurement (gyro, acc) in pre-integrated measurement
		:param u: imu measurements, shape [k, 6]
		:return: pre-integrated measurement
		"""
        delta_R_prev = torch.eye(3)
        delta_v_prev = torch.zeros(3)
        delta_p_prev = torch.zeros(3)
        self.J = torch.zeros(u.shape[0], 9, 8)
        for k in range(u.shape[0]):
            self.J[k, :3, :3] = delta_R_prev * self.delta_t
            self.J[
                k,
                3:6, :3] = -delta_R_prev.mm(self.skew(u[k, 3:])) * self.delta_t
            self.J[k, 3:6, 3:6] = delta_R_prev * self.delta_t
            self.J[k, 3:6, :3] = -1 / 2 * delta_R_prev.mm(self.skew(
                u[k, 3:])) * (self.delta_t**2)
            self.J[k, 6:9, 3:6] = 1 / 2 * delta_R_prev * (self.delta_t**2)
            delta_R = delta_R_prev.mm(
                SO3.exp(u[k, :3] * self.delta_t).as_matrix())
            delta_v = delta_v_prev + delta_R.mv(u[k, 3:] * self.delta_t)
            delta_p = delta_p_prev + delta_v * self.delta_t + delta_R.mv(
                u[k, 3:] * self.delta_t) * (self.delta_t**2) / 2
            delta_R_prev = SO3.from_matrix(delta_R, normalize=True).as_matrix()
            delta_v_prev = delta_v
            delta_p_prev = delta_p

        return torch.cat((SO3.from_matrix(delta_R).log(), delta_v, delta_p), 0)
示例#10
0
    def correct(self, x, u_odo, u_fog, compute_G=False, full_cov=False):
        u_odo_fog = torch.cat((u_odo, u_fog), 1).unsqueeze(0)
        u_odo_fog.requires_grad = True
        Xnew = self.normalize(u_odo_fog)

        # take mean to speed up correction
        y_cor_nor, _ = self.gp_f.forward(Xnew, full_cov)

        # # sample corrections and take mean
        # N = 100
        # mean, cov = self.gp_f.forward(Xnew, full_cov=True)
        # y_cor_nor = torch.zeros(6)
        # dist = torch.distributions.MultivariateNormal(loc=mean, cov)
        # for i in range(N):
        # 	y_cor_nor += 1/N * dist.sample()

        y_cor = self.unnormalize(y_cor_nor.t(), var="y_odo_fog").squeeze()
        G_cor = self.correct_cov(u_odo_fog, y_cor, compute_G)
        u_odo_fog.requires_grad = False
        y_cor = y_cor.detach()
        y_cor[[3, 4]] = 0  # pitch and roll corrections are set to 0
        G_cor[[3, 4], :] = 0
        Rot = SO3.from_rpy(x[3:6]).as_matrix()
        # correct state
        dRot_cor = SO3.exp(y_cor[3:]).as_matrix()
        x[:3] = x[:3] + Rot.mv(SE3.exp(y_cor).as_matrix()[:3, 3])
        x[3:6] = SO3.from_matrix(Rot.mm(dRot_cor)).to_rpy()
        return x, G_cor
示例#11
0
def test_rotmat_quat_large_conversions():
    print('Large (angle=pi) rotation matrix to quaternion conversions...')
    axis = torch.randn(100, 3, dtype=torch.double)
    axis = axis / axis.norm(dim=1, keepdim=True)
    angle = np.pi

    C1 = SO3.exp(angle * axis).as_matrix()
    C2_new = quat_to_rotmat(rotmat_to_quat(C1))
    assert (allclose(C1, C2_new))
    print('All passed.')
示例#12
0
def test_normalize_batch():
    C = SO3.exp(torch.Tensor([[1, 2, 3], [4, 5, 6], [0, 0, 0]]))
    assert (SO3.is_valid_matrix(C.mat) == torch.ByteTensor([1, 1, 1])).all()

    C.mat.add_(0.1)
    assert (SO3.is_valid_matrix(C.mat) == torch.ByteTensor([0, 0, 0])).all()

    C.normalize(inds=[0, 2])
    assert (SO3.is_valid_matrix(C.mat) == torch.ByteTensor([1, 0, 1])).all()

    C.normalize()
    assert SO3.is_valid_matrix(C.mat).all()
示例#13
0
    def h_hat(self, u):
        delta_R_prev = torch.eye(3).repeat(u.shape[0], 1, 1)
        delta_v_prev = torch.zeros(3).repeat(u.shape[0], 1)
        delta_p_prev = torch.zeros(3).repeat(u.shape[0], 1)
        for k in range(u.shape[1]):
            delta_R = delta_R_prev.matmul(
                SO3.exp(u[:, k, :3] * self.delta_t).as_matrix())
            delta_v = delta_v_prev + bmv(delta_R, u[:, k, 3:]) * self.delta_t
            delta_p = delta_p_prev + delta_v * self.delta_t + bmv(
                delta_R, u[:, k, 3:] * self.delta_t) * (self.delta_t**2) / 2
            delta_R_prev = SO3.from_matrix(delta_R, normalize=True).as_matrix()
            delta_v_prev = delta_v
            delta_p_prev = delta_p

        return torch.cat((SO3.from_matrix(delta_R).log(), delta_v, delta_p), 1)
def gen_sim_data(N_rotations, N_matches_per_rotation, sigma, angle_limits=[0., 180.], dtype=torch.double):
    ##Simulation
    #Create a random rotation
    axis = torch.randn(N_rotations, 3, dtype=dtype)
    axis = axis / axis.norm(dim=1, keepdim=True)
    
    fac = (np.pi/180.)
    angle = fac*(angle_limits[1] - angle_limits[0])*torch.rand(N_rotations, 1) + fac*angle_limits[0]

    C = SO3_torch.exp(angle*axis).as_matrix()
    if N_rotations == 1:
        C = C.unsqueeze(dim=0)
    #Create two sets of vectors (normalized to unit l2 norm)
    x_1 = torch.randn(N_rotations, 3, N_matches_per_rotation, dtype=dtype)
    x_1 = x_1/x_1.norm(dim=1,keepdim=True)   
    #Rotate and add noise
    noise = sigma*torch.randn_like(x_1)
    x_2 = C.bmm(x_1) + noise
   
    return C, x_1, x_2
示例#15
0
    def vec2Cov(cls, p):
        """
        Args:
            pred_cov [n x 3] : xx, yy, zz,
        Returns:
            cov [n x 3 x 3] : full covariance (actually it is diagonal)
        """
        assert p.shape[1] == cls.covParamNumber
        N = p.shape[0]

        # I am not sure if it outpus R or RT wrt to Sophus library
        R = SO3.exp(p[:, 3:6]).mat

        covf = torch.zeros((N, 3, 3))
        # on diagonal terms
        covf[:, 0, 0] = torch.exp(2 * p[:, 0])
        covf[:, 1, 1] = torch.exp(2 * p[:, 1])
        covf[:, 2, 2] = torch.exp(2 * p[:, 2])
        output = torch.einsum("kip,kpl,kjl->kij", R, covf, R)  #  R.diag.R^T

        return output
示例#16
0
    def __getitem__(self, idx):
        # Select a random point cloud
        if self.test_mode:
            pointcloud_id = idx
        else:
            pointcloud_id = torch.randint(len(self.file_list), (1, )).item()

        if self.data is None:
            pc1 = torch.from_numpy(
                np.array(self._load_file(self.file_list[pointcloud_id])))
        else:
            pc1 = self.data[pointcloud_id]

        #Matches the original code
        point_num = int(pc1.shape[0] / 2)
        #Sub sample
        pc1 = pc1[:point_num]

        batch_num = self.rotations_per_batch
        pc1 = pc1.view(1, point_num, 3).expand(batch_num, point_num,
                                               3).transpose(1,
                                                            2)  #batch*3*p_num
        C = SO3.exp(torch.randn(batch_num, 3, dtype=torch.double)).as_matrix()

        pc2 = torch.bmm(C, pc1)  #(batch*point_num)*3*1

        x = torch.empty(batch_num, 2, point_num, 3)
        x[:, 0, :, :] = pc1.transpose(1, 2)
        x[:, 1, :, :] = pc2.transpose(1, 2)

        if self.rotmat_targets:
            targets = C
        else:
            targets = rotmat_to_quat(C, ordering='xyzw')
        targets = targets.to(self.dtype)
        x = x.to(self.dtype)

        return (x, targets)
示例#17
0
def test_exp_log():
    C_big = SO3.exp(0.25 * np.pi * torch.ones(3))
    assert utils.allclose(SO3.exp(SO3.log(C_big)).mat, C_big.mat)

    C_small = SO3.exp(torch.zeros(3))
    assert utils.allclose(SO3.exp(SO3.log(C_small)).mat, C_small.mat)
示例#18
0
文件: tester.py 项目: tym2103/DeepLIO
    def test(self):
        writer = self.tensor_writer
        model = self.model

        batch_time = AverageMeter('Time', ':6.3f')
        inference_time = AverageMeter('Inf-Time', ':6.3f')
        losses = AverageMeter('Loss', ':.4e')
        progress = ProgressMeter(self.logger,
                                 len(self.test_dataloader),
                                 [batch_time, inference_time, losses],
                                 prefix='Test: ')

        seq_names = []
        last_seq = None
        curr_seq = None

        # switch to evaluate mode
        model.eval()

        with torch.no_grad():
            end = time.time()

            for idx, data in enumerate(self.test_dataloader):

                # check if we can run or are we stopped
                if not self.is_running:
                    return 0

                # prepare data
                self.data_permuter(data)
                imgs = self.data_permuter.res_imgs
                normals = self.data_permuter.res_normals
                imus = self.data_permuter.res_imu
                gts_f2f = self.data_permuter.res_gt_f2f
                gts_f2g = self.data_permuter.res_gt_f2g
                gts_global = self.data_permuter.res_gt_global

                if torch.isnan(gts_f2f).any() or torch.isinf(gts_f2f).any():
                    raise ValueError("gt-f2f:\n{}".format(gts_f2f))
                if torch.isnan(gts_f2g).any() or torch.isinf(gts_f2g).any():
                    raise ValueError("gt-f2g:\n{}".format(gts_f2g))

                # prepare ground truth tranlational and rotational part
                gt_f2f_t = gts_f2f[:, :, 0:3]
                gt_f2f_w = gts_f2f[:, :, 3:]
                gt_f2g_p = gts_f2g[:, :, 0:3]
                gt_f2g_q = gts_f2g[:, :, 3:7]

                # compute model predictions and loss
                start_inference = time.time()
                pred_f2f_t, pred_f2f_w = self.model([[imgs, normals], imus])
                inference_time.update(time.time() - start_inference)

                pred_f2g_p, pred_f2g_q = self.se3_to_SE3(
                    pred_f2f_t, pred_f2f_w)

                loss = self.criterion(pred_f2f_t, pred_f2f_w, pred_f2g_p,
                                      pred_f2g_q, gt_f2f_t, gt_f2f_w, gt_f2g_p,
                                      gt_f2g_q)

                # measure accuracy and record loss
                losses.update(loss.detach().item(), len(pred_f2f_t))

                # measure elapsed time
                batch_time.update(time.time() - end)
                end = time.time()

                batch_size = len(data['metas'])
                # get meta information for saving the odom. results
                for b in range(batch_size):
                    meta = data['metas'][b]
                    date, drive = meta['date'][0], meta['drive'][0]
                    velo_ts = meta['velo-timestamps']

                    gt_global = data['gts'][b].cpu().numpy(
                    )  # gts_global[0].cpu().numpy()
                    seq_name = "{}_{}".format(date, drive)
                    if seq_name not in seq_names:
                        if last_seq is not None:
                            last_seq.write_to_file()

                        curr_seq = OdomSeqRes(date,
                                              drive,
                                              output_dir=self.out_dir)
                        T_glob = np.identity(4)
                        T_glob[:3, 3] = gt_global[0, 0:3]  # t
                        T_glob[:3, :3] = gt_global[0, 3:12].reshape(3, 3)  # R
                        curr_seq.add_local_prediction(velo_ts[0], 0., T_glob,
                                                      T_glob)

                        # add the file name and file-pointer to the list
                        seq_names.append(seq_name)
                        losses.reset()

                    # global ground truth pose
                    T_glob = np.identity(4)
                    T_glob[:3, 3] = gt_global[1, 0:3]  # t
                    T_glob[:3, :3] = gt_global[1, 3:12].reshape(3, 3)  # R

                    gt_t = gt_f2f_t[b].detach().cpu().squeeze()
                    gt_w = gt_f2f_w[b].detach().cpu().squeeze()
                    pred_f2f_t_b = pred_f2f_t[b].detach().cpu().squeeze()
                    pred_f2f_w_b = pred_f2f_w[b].detach().cpu().squeeze()

                    #if self.has_imu and not np.all(data['valids']):
                    #    pred_f2f_t_b = gt_t
                    #    pred_f2f_w_b = gt_w

                    T_local = np.identity(4)

                    if self.args.param == 'xq':
                        T_local[:3, 3] = pred_f2f_t_b.numpy()
                        T_local[:3, :3] = SO3.exp(pred_f2f_w_b).as_matrix(
                        ).numpy(
                        )  # spatial.quaternion_to_rotation_matrix(pred_f2f_r).numpy()
                    elif self.args.param == 'x':
                        T_local[:3, 3] = pred_f2f_t_b.numpy()
                        T_local[:3, :3] = SO3.exp(gt_w).as_matrix().numpy(
                        )  # spatial.quaternion_to_rotation_matrix(gt_q).numpy()
                    elif self.args.param == 'q':
                        T_local[:3, 3] = gt_t.numpy()
                        T_local[:3, :3] = SO3.exp(
                            pred_f2f_w_b).as_matrix().numpy()
                    else:
                        T_local[:3, 3] = gt_t.numpy()
                        T_local[:3, :
                                3] = spatial.quaternion_to_rotation_matrix(
                                    gt_w).numpy()

                    curr_seq.add_local_prediction(velo_ts[1], losses.avg,
                                                  T_local, T_glob)

                    last_seq = curr_seq

                if idx % self.args.print_freq == 0:
                    progress.display(idx)
                    # update tensorboard
                    step_val = idx
                    self.tensor_writer.add_scalar\
                        ("Loss test", losses.avg, step_val)
                    self.tensor_writer.flush()

        if curr_seq is not None:
            curr_seq.write_to_file()
示例#19
0
def test_normalize():
    C = SO3.exp(0.25 * np.pi * torch.ones(3))
    C.mat.add_(0.1)
    C.normalize()
    assert SO3.is_valid_matrix(C.mat).all()
示例#20
0
def test_inv_batch():
    C = SO3.exp(torch.Tensor([[1, 2, 3], [4, 5, 6]]))
    assert utils.allclose(C.dot(C.inv()).mat, SO3.identity(C.mat.shape[0]).mat)
示例#21
0
def test_inv():
    C = SO3.exp(0.25 * np.pi * torch.ones(3))
    assert utils.allclose(C.dot(C.inv()).mat, SO3.identity().mat)
示例#22
0
def test_adjoint():
    C = SO3.exp(0.25 * np.pi * torch.ones(3))
    assert (C.adjoint() == C.mat).all()
示例#23
0
def test_rotmat_quat_conversions():
    print('Rotation matrix to quaternion conversions...')
    C1 = SO3.exp(torch.randn(100, 3, dtype=torch.double)).as_matrix()
    C2 = quat_to_rotmat(rotmat_to_quat(C1))
    assert (allclose(C1, C2))
    print('All passed.')
示例#24
0
def test_adjoint_batch():
    C = SO3.exp(torch.Tensor([[1, 2, 3], [4, 5, 6]]))
    assert (C.adjoint() == C.mat).all()
示例#25
0
def test_exp_log_batch():
    C = SO3.exp(torch.Tensor([[1, 2, 3], [0, 0, 0]]))
    assert utils.allclose(SO3.exp(SO3.log(C)).mat, C.mat)
示例#26
0
文件: filter.py 项目: zzzzzjh/lwoi
 def update_state(self, K_prefix, S, dy):
     dx = K_prefix.mm(torch.gesv(dy, S)[0]).squeeze(1)  # K*dy
     self.x[:3] += dx[:3]
     self.x[3:6] += (SO3.exp(dx[3:6]).dot(SO3.from_rpy(
         self.x[3:6]))).to_rpy()
     self.x[6:9] += dx[6:9]