示例#1
0
def generate_view(time,
                  values,
                  num_bins,
                  bin_width,
                  t_min,
                  t_max,
                  normalize=True):
    """Generates a view of a phase-folded and binned light curve.

  Args:
    time: 1D NumPy array of time values, sorted in ascending order.
    values: N-dimensional NumPy array with the same length as time.
    num_bins: The number of intervals to divide the time axis into.
    bin_width: The width of each bin on the time axis.
    t_min: The inclusive leftmost value to consider on the time axis.
    t_max: The exclusive rightmost value to consider on the time axis.
    normalize: Whether to center the median at 0 and minimum value at -1.

  Returns:
    NumPy array of length num_bins containing the aggregated values in uniformly
    spaced bins on the phase-folded time axis.
  """
    view, bin_counts = binning.bin_and_aggregate(time, values, num_bins,
                                                 bin_width, t_min, t_max)
    # Empty bins fall back to the global median.
    view = np.where(bin_counts > 0, view, np.median(values))

    if normalize:
        view -= np.median(view, axis=0)
        view /= np.abs(np.min(view, axis=0))

    return view
示例#2
0
 def test2DMax(self):
     x = np.array([-4, -2, -2, 0, 0, 0, 2, 2, 2, 2, 3, 3, 3, 3, 3])
     y = np.array([
         [0, 123],
         [-1, 0],
         [1, 2],
         [4, -4],
         [5, 4],
         [6, 6],
         [1, 50],
         [3, 100],
         [3, 100],
         [9, 110],
         [1, 0],
         [1, 0],
         [1, 0],
         [1, 0],
         [-2, 5],
     ])
     result, bin_counts = bin_and_aggregate(x,
                                            y,
                                            num_bins=5,
                                            bin_width=2,
                                            x_min=-5,
                                            x_max=5,
                                            aggr_fn=np.max)
     np.testing.assert_array_almost_equal(
         [[0, 123], [1, 2], [6, 6], [9, 110], [1, 5]], result)
     np.testing.assert_array_equal([1, 2, 3, 4, 5], bin_counts)
示例#3
0
 def testBucketBoundaries(self):
     x = np.array([-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6])
     y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13])
     result, bin_counts = bin_and_aggregate(x,
                                            y,
                                            num_bins=5,
                                            bin_width=2,
                                            x_min=-5,
                                            x_max=5)
     np.testing.assert_array_equal([2.5, 4.5, 6.5, 8.5, 10.5], result)
     np.testing.assert_array_equal([2, 2, 2, 2, 2], bin_counts)
示例#4
0
 def testNarrowBins(self):
     x = np.array([-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6])
     y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13])
     result, bin_counts = bin_and_aggregate(x,
                                            y,
                                            num_bins=5,
                                            bin_width=1,
                                            x_min=-4.5,
                                            x_max=4.5)
     np.testing.assert_array_equal([3, 5, 7, 9, 11], result)
     np.testing.assert_array_equal([1, 1, 1, 1, 1], bin_counts)
示例#5
0
 def testWideBins(self):
     x = np.array([-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6])
     y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13])
     result, bin_counts = bin_and_aggregate(x,
                                            y,
                                            num_bins=5,
                                            bin_width=6,
                                            x_min=-7,
                                            x_max=7)
     np.testing.assert_array_equal([3, 4.5, 6.5, 8.5, 10.5], result)
     np.testing.assert_array_equal([5, 6, 6, 6, 6], bin_counts)
示例#6
0
 def testMedianAggr(self):
     x = np.array([-4, -2, -2, 0, 0, 0, 2, 2, 2, 2, 3, 3, 3, 3, 3])
     y = np.array([0, -1, 1, 4, 5, 6, 1, 3, 3, 9, 1, 1, 1, 1, -2])
     result, bin_counts = bin_and_aggregate(x,
                                            y,
                                            num_bins=5,
                                            bin_width=2,
                                            x_min=-5,
                                            x_max=5)
     np.testing.assert_array_equal([0, 0, 5, 3, 1], result)
     np.testing.assert_array_equal([1, 2, 3, 4, 5], bin_counts)
示例#7
0
def _make_views(tce, time, values, global_view_nbins,
                global_view_bin_width_factor, local_view_nbins,
                local_view_bin_width_factor, local_view_num_durations,
                aggr_fn):
    """Creates global and local views with embeddings or flux."""
    # Extract event attributes.
    period = tce["tce_period"]
    t0 = tce["tce_time0bk"]
    duration = tce["tce_duration"]
    t_min = -period / 2
    t_max = period / 2

    time, values = preprocess.phase_fold_and_sort_light_curve(
        time, values, period, t0)

    aggr_fn = getattr(np, aggr_fn)

    global_view, global_view_counts = binning.bin_and_aggregate(
        time,
        values,
        num_bins=global_view_nbins,
        bin_width=period * global_view_bin_width_factor,
        x_min=t_min,
        x_max=t_max,
        aggr_fn=aggr_fn)

    local_view, local_view_counts = binning.bin_and_aggregate(
        time,
        values,
        num_bins=local_view_nbins,
        bin_width=duration * local_view_bin_width_factor,
        x_min=max(t_min, -duration * local_view_num_durations),
        x_max=min(t_max, duration * local_view_num_durations),
        aggr_fn=aggr_fn)

    return {
        "global_view": (global_view, global_view_counts),
        "local_view": (local_view, local_view_counts),
    }
示例#8
0
 def testMultiSizeBins(self):
     # Construct bins with size 0, 1, 2, 3, 4, 5, 10, respectively.
     x = np.array([
         1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6,
         6, 6, 6
     ])
     y = np.array([
         0, -1, 1, 4, 5, 6, 2, 2, 4, 4, 1, 1, 1, 1, -1, 1, 2, 3, 4, 5, 6, 7,
         8, 9, 10
     ])
     result, bin_counts = bin_and_aggregate(x,
                                            y,
                                            num_bins=7,
                                            bin_width=1,
                                            x_min=0,
                                            x_max=7)
     np.testing.assert_array_equal([0, 0, 0, 5, 3, 1, 5.5], result)
     np.testing.assert_array_equal([0, 1, 2, 3, 4, 5, 10], bin_counts)
示例#9
0
    def testErrors(self):
        # x size less than 2.
        x = [1]
        y = [2]
        with self.assertRaises(ValueError):
            bin_and_aggregate(x, y, num_bins=2, bin_width=1, x_min=0, x_max=2)

        # x and y not the same size.
        x = [1, 2]
        y = [4, 5, 6]
        with self.assertRaises(ValueError):
            bin_and_aggregate(x, y, num_bins=2, bin_width=1, x_min=0, x_max=2)

        # x_min not less than x_max.
        x = [1, 2, 3]
        with self.assertRaises(ValueError):
            bin_and_aggregate(x,
                              y,
                              num_bins=2,
                              bin_width=1,
                              x_min=-1,
                              x_max=-1)

        # x_min greater than the last element of x.
        with self.assertRaises(ValueError):
            bin_and_aggregate(x,
                              y,
                              num_bins=2,
                              bin_width=0.25,
                              x_min=3.5,
                              x_max=4)

        # bin_width nonpositive.
        with self.assertRaises(ValueError):
            bin_and_aggregate(x, y, num_bins=2, bin_width=0, x_min=1, x_max=3)

        # bin_width greater than or equal to x_max - x_min.
        with self.assertRaises(ValueError):
            bin_and_aggregate(x,
                              y,
                              num_bins=2,
                              bin_width=1,
                              x_min=1.5,
                              x_max=2.5)

        # num_bins less than 2.
        x = [1, 2, 3]
        with self.assertRaises(ValueError):
            bin_and_aggregate(x, y, num_bins=1, bin_width=1, x_min=0, x_max=2)
示例#10
0
 def testDefaultXMinMax(self):
     x = np.array([-4, -2, -2, 0, 0, 0, 2, 2, 2, 2, 3, 3, 3, 3, 3])
     y = np.array([7, -1, 3, 4, 5, 6, 2, 2, 4, 4, 1, 1, 1, 1, -1])
     result, bin_counts = bin_and_aggregate(x, y, num_bins=5)
     np.testing.assert_array_equal([7, 1, 5, 0, 3], result)
     np.testing.assert_array_equal([1, 2, 3, 0, 4], bin_counts)