示例#1
0
 def setUp(self):
     SP.random.seed(1)
     self.n = 4
     self.rank = 1
     d = SP.rand(self.n) + 1
     C0 = dlimix.CSumCF()
     C0.addCovariance(dlimix.CLowRankCF(self.n, self.rank))
     C0.addCovariance(dlimix.CDiagonalCF(self.n))
     self.C = dlimix.CFixedDiagonalCF(C0, d)
     self.name = 'CFixedDiagonalCF'
     self.n_params = self.C.getNumberParams()
     params = SP.randn(self.n_params)
     self.C.setParams(params)
     """
示例#2
0
 def setUp(self):
     SP.random.seed(1)
     self.n=10
     n_dim1=8
     n_dim2=12
     self.C=dlimix.CSumCF()
     self.C.addCovariance(dlimix.CCovSqexpARD(n_dim1));
     self.C.addCovariance(dlimix.CCovLinearARD(n_dim2));
     self.n_dim=self.C.getNumberDimensions()
     X=SP.rand(self.n,self.n_dim)
     self.C.setX(X)
     self.name = 'CSumCF'
     self.n_params=self.C.getNumberParams()
     params=SP.exp(SP.randn(self.n_params))
     self.C.setParams(params)
示例#3
0
 def setUp(self):
     SP.random.seed(1)
     self.n=10
     n_dim2=12
     K0 = SP.eye(self.n)
     self.C=dlimix.CSumCF()
     #sum of fixed CF and linearARD
     covar1 = dlimix.CFixedCF(K0)
     covar2 = dlimix.CCovLinearARD(n_dim2)
     self.C.addCovariance(covar1)
     self.C.addCovariance(covar2)
     self.n_dim=self.C.getNumberDimensions()
     self.X=SP.rand(self.n,self.n_dim)
     self.C.setX(self.X)
     self.name = 'CSumCF'
     self.n_params=self.C.getNumberParams()
     params=SP.exp(SP.randn(self.n_params))
     self.C.setParams(params)
示例#4
0
    def setUp(self):
        SP.random.seed(1)

        #1. simulate
        self.settings = {'K': 5, 'N': 100, 'D': 80}
        self.simulation = self.simulate()

        N = self.settings['N']
        K = self.settings['K']
        D = self.settings['D']

        #2. setup GP
        K0 = SP.dot(self.simulation['S'], self.simulation['S'].T)
        K0[:] = 0

        covar1 = dlimix.CFixedCF(K0)
        covar2 = dlimix.CCovLinearISO(K)
        covar = dlimix.CSumCF()
        covar.addCovariance(covar1)
        covar.addCovariance(covar2)

        ll = dlimix.CLikNormalIso()
        #create hyperparm
        covar_params = SP.array([0.0, 1.0])
        lik_params = SP.array([0.1])
        hyperparams = dlimix.CGPHyperParams()
        hyperparams['covar'] = covar_params
        hyperparams['lik'] = lik_params
        hyperparams['X'] = self.simulation['X0']
        #cretae GP
        self.gp = dlimix.CGPbase(covar, ll)
        #set data
        self.gp.setY(self.simulation['Y'])
        self.gp.setX(self.simulation['X0'])
        self.gp.setParams(hyperparams)
        pass
示例#5
0
    def _buildTraitCovar(self,
                         trait_covar_type='lowrank_diag',
                         rank=1,
                         fixed_trait_covar=None,
                         jitter=1e-4,
                         d=None):
        """
        Internal functions that builds the trait covariance matrix using the LIMIX framework

        Args:
            trait_covar_type: type of covaraince to use. Default 'freeform'. possible values are
            rank:       rank of a possible lowrank component (default 1)
            fixed_trait_covar:   PxP matrix for the (predefined) trait-to-trait covariance matrix if fixed type is used
            jitter:        diagonal contribution added to trait-to-trait covariance matrices for regularization
        Returns:
            LIMIX::PCovarianceFunction for Trait covariance matrix
            vector labelling Cholesky parameters for different initializations
        """
        cov = dlimix.CSumCF()
        if trait_covar_type == 'freeform':
            cov.addCovariance(dlimix.CFreeFormCF(self.P))
            L = sp.eye(self.P)
            diag = sp.concatenate([L[i, :(i + 1)] for i in range(self.P)])
        elif trait_covar_type == 'fixed':
            assert fixed_trait_covar is not None, 'VarianceDecomposition:: set fixed_trait_covar'
            assert fixed_trait_covar.shape[
                0] == self.N, 'VarianceDecomposition:: Incompatible shape for fixed_trait_covar'
            assert fixed_trait_covar.shape[
                1] == self.N, 'VarianceDecomposition:: Incompatible shape for fixed_trait_covar'
            cov.addCovariance(dlimix.CFixedCF(fixed_trait_covar))
            diag = sp.zeros(1)
        elif trait_covar_type == 'diag':
            cov.addCovariance(dlimix.CDiagonalCF(self.P))
            diag = sp.ones(self.P)
        elif trait_covar_type == 'lowrank':
            cov.addCovariance(dlimix.CLowRankCF(self.P, rank))
            diag = sp.zeros(self.P * rank)
        elif trait_covar_type == 'lowrank_id':
            cov.addCovariance(dlimix.CLowRankCF(self.P, rank))
            cov.addCovariance(dlimix.CFixedCF(sp.eye(self.P)))
            diag = sp.concatenate([sp.zeros(self.P * rank), sp.ones(1)])
        elif trait_covar_type == 'lowrank_diag':
            cov.addCovariance(dlimix.CLowRankCF(self.P, rank))
            cov.addCovariance(dlimix.CDiagonalCF(self.P))
            diag = sp.concatenate([sp.zeros(self.P * rank), sp.ones(self.P)])
        elif trait_covar_type == 'lowrank_diag1':
            assert d.shape[0] == self.P, 'dimension mismatch for d'
            cov1 = dlimix.CSumCF()
            cov1.addCovariance(dlimix.CLowRankCF(self.P, rank))
            cov1.addCovariance(dlimix.CDiagonalCF(self.P))
            cov.addCovariance(dlimix.CFixedDiagonalCF(cov1, d))
            diag = sp.concatenate([sp.zeros(self.P * rank), sp.ones(self.P)])
        elif trait_covar_type == 'freeform1':
            assert d.shape[0] == self.P, 'dimension mismatch for d'
            cov.addCovariance(
                dlimix.CFixedDiagonalCF(dlimix.CFreeFormCF(self.P), d))
            L = sp.eye(self.P)
            diag = sp.concatenate([L[i, :(i + 1)] for i in range(self.P)])
        elif trait_covar_type == 'block':
            cov.addCovariance(dlimix.CFixedCF(sp.ones((self.P, self.P))))
            diag = sp.zeros(1)
        elif trait_covar_type == 'block_id':
            cov.addCovariance(dlimix.CFixedCF(sp.ones((self.P, self.P))))
            cov.addCovariance(dlimix.CFixedCF(sp.eye(self.P)))
            diag = sp.concatenate([sp.zeros(1), sp.ones(1)])
        elif trait_covar_type == 'block_diag':
            cov.addCovariance(dlimix.CFixedCF(sp.ones((self.P, self.P))))
            cov.addCovariance(dlimix.CDiagonalCF(self.P))
            diag = sp.concatenate([sp.zeros(1), sp.ones(self.P)])
        else:
            assert True == False, 'VarianceDecomposition:: trait_covar_type not valid'
        if jitter > 0:
            _cov = dlimix.CFixedCF(sp.eye(self.P))
            _cov.setParams(sp.array([sp.sqrt(jitter)]))
            _cov.setParamMask(sp.zeros(1))
            cov.addCovariance(_cov)
        return cov, diag