示例#1
0
    def _fit(self, X, y):
        self._check(X, y)
        assert (dim(y) == 1)

        beta = zeros(shape(X)[1])  # row vector
        X_T = matrix_transpose(X)

        if self.fit_intercept:
            beta[0] = sum(minus(reshape(y, -1), dot(X,
                                                    beta[1:]))) / (shape(X)[0])

        for _ in range(self.max_iter):
            print(_)
            start = 1 if self.fit_intercept else 0
            for j in range(start, len(beta)):
                tmp_beta = [x for x in beta]
                tmp_beta[j] = 0.0

                r_j = minus(reshape(y, -1), dot(X, beta))
                # r_j = minus(reshape(y,-1) , dot(X, tmp_beta))
                arg1 = dot(X_T[j], r_j)
                arg2 = self.alpha * shape(X)[0]

                if sum(square(X_T[j])) != 0:
                    beta[j] = self._soft_thresholding_operator(
                        arg1, arg2) / sum(square(X_T[j]))
                else:
                    beta[j] = 0

                if self.fit_intercept:
                    beta[0] = sum(minus(reshape(y, -1), dot(
                        X, beta[1:]))) / (shape(X)[0])
        return beta
示例#2
0
    def predict(self, X):
        result = []
        # dim_X = dim(X)

        if dim(X) == 1:
            X = [X]
        for x in X:
            loss = sum(square(minus(self.X, x)), axis=1)

            index = argsort(loss)[:self.k]
            if self.verbose:
                print(index)

            ys = []
            for i in index:
                ys.append(self.y[i])

            k_loss_raw = sorted(loss)[:self.k]
            k_loss = [1 / l if l != 0 else 0 for l in k_loss_raw]
            k_loss_sum = sum(k_loss)
            weights = [
                l / float(k_loss_sum) if k_loss_sum != 0 else 1 for l in k_loss
            ]
            weight_m = diag(weights)
            ys = matrix_matmul(weight_m, ys)
            result.append(sum(ys, axis=0))

        if len(self.shape_Y) == 1:
            result = matrix_transpose(result)[0]

        return result
示例#3
0
    def fit(self, X, y):
        self._check(X, y)
        if dim(y) == 1:
            raw_X = X
            if self.fit_intercept:
                X = hstack([ones(shape(X)[0], 1), X])

            beta = zeros(shape(X)[1])  # row vector
            X_T = matrix_transpose(X)

            if self.fit_intercept:
                beta[0] = sum(minus(reshape(y, -1), dot(
                    raw_X, beta[1:]))) / (shape(X)[0])

            for _ in range(self.max_iter):
                start = 1 if self.fit_intercept else 0
                for j in range(start, len(beta)):
                    tmp_beta = [x for x in beta]
                    tmp_beta[j] = 0.0

                    r_j = minus(reshape(y, -1), dot(X, beta))
                    # r_j = minus(reshape(y,-1) , dot(X, tmp_beta))
                    arg1 = dot(X_T[j], r_j)
                    arg2 = self.alpha * shape(X)[0]

                    if sum(square(X_T[j])) != 0:
                        beta[j] = self._soft_thresholding_operator(
                            arg1, arg2) / sum(square(X_T[j]))
                    else:
                        beta[j] = 0

                    if self.fit_intercept:
                        beta[0] = sum(
                            minus(reshape(y, -1), dot(
                                raw_X, beta[1:]))) / (shape(X)[0])
                # # add whatch
                # self.beta = beta
                # self._whatch(raw_X,y)

            if self.fit_intercept:
                self.intercept_ = beta[0]
                self.coef_ = beta[1:]
            else:
                self.coef_ = beta
            self.beta = beta
            return self
        elif dim(y) == 2:
            if self.fit_intercept:
                X = hstack([ones(shape(X)[0], 1), X])
            y_t = matrix_transpose(y)
            betas = []
            for i in range(shape(y)[1]):
                betas.append(self._fit(X, y_t[i]))
            batas = matrix_transpose(betas)
            self.betas = batas
示例#4
0
    def fit(self, X, y, weights=None):
        X, y = self._check(X, y)

        if self.fit_intercept:
            m, n = shape(X)
            bias = ones(m, 1)
            X = hstack([bias, X])

        eye = identity_matrix(shape(X)[1])
        from linalg.matrix import diag
        if not self.penalty_bias:
            eye[0][0] = 0

        # add weights
        if weights != None:
            assert (len(weights) == shape(X)[0])
            X = matrix_matmul(diag(weights), X)

        X_T = matrix_transpose(X)

        self.W = matrix_matmul(
            matrix_matmul(
                matrix_inverse(
                    plus(matrix_matmul(X_T, X),
                         multiply(eye,
                                  self.alpha * shape(X)[0]))
                    # plus(matrix_matmul(X_T,X),multiply(eye,self.alpha))
                ),
                X_T),
            y)
        self.importance_ = sum(self.W, axis=1)
        if self.fit_intercept:
            self.importance_ = self.importance_[1:]
示例#5
0
def get_backpack_score(machine_number, machine_config, flavors_unique,
                       flavors_config, backpack_result):
    def _get_em_weights_of_cpu_and_mem(flavors_unique, flavors_config, em):
        cpu = 0
        mem = 0
        for k, v in em.items():
            cpu += flavors_config[flavors_unique.index(k)]['CPU'] * v
            mem += flavors_config[flavors_unique.index(k)]['MEM'] * v
        return cpu, mem

    cpu_total_total = 0
    mem_total_total = 0
    cpu_used_total_total = 0
    mem_used_total_total = 0

    for i in range(machine_number):
        cpu_total = len(backpack_result[i]) * machine_config[i]['CPU']
        mem_total = len(backpack_result[i]) * machine_config[i]['MEM']
        cpu_total_total += cpu_total
        mem_total_total += mem_total

        # state:[(cpu,mem),(cpu,mem)...]
        # [(81, 155), (82, 159), (84, 157), (81, 153)]
        state = [
            _get_em_weights_of_cpu_and_mem(flavors_unique, flavors_config, em)
            for em in backpack_result[i]
        ]
        cpu_used_total = sum([s[0] for s in state])
        mem_used_total = sum([s[1] for s in state])

        cpu_used_total_total += cpu_used_total
        mem_used_total_total += mem_used_total

        # print(cpu_used_total,cpu_total_total)
        # print(mem_used_total,mem_total_total)

    cpu_rate = cpu_used_total_total / float(cpu_total_total)
    mem_rate = mem_used_total_total / float(mem_total_total)
    return cpu_rate, mem_rate
示例#6
0
    def predict(self, X):
        result = []
        # dim_X = dim(X)

        if dim(X) == 1:
            X = [X]
        for x in X:
            loss = sum(square(minus(self.X, x)), axis=1)
            # loss = sum(abs(minus(self.X,x)),axis=1)
            index = argsort(loss)[:self.k]
            if self.verbose:
                print(index, '/len', len(loss))
            ys = []
            for i in index:
                ys.append(self.y[i])
            result.append(mean(ys, axis=0))
        return result
示例#7
0
    def predict(self, X):
        result = []
        # dim_X = dim(X)
        if dim(X) == 1:
            X = [X]
        for x in X:
            loss = sum(square(minus(self.X, x)), axis=1)
            # loss = sum(abs(minus(self.X,x)),axis=1)

            from preprocessing import standard_scaling
            new_X = standard_scaling(self.X, axis=0)
            x = sqrt(square(minus(x, mean(x))))
            loss = minus(loss, multiply(dot(new_X, x), self.alpha))

            index = argsort(loss)[:self.k]
            if self.verbose:
                print(index, '/len', len(loss))
            ys = []
            for i in index:
                ys.append(self.y[i])
            result.append(mean(ys, axis=0))
        return result
示例#8
0
    def fit(self, X, y):
        X, y = self._check(X, y)

        if self.fit_intercept:
            m, n = shape(X)
            bias = ones(m, 1)
            X = hstack([bias, X])

        eye = identity_matrix(shape(X)[1])
        from linalg.matrix import diag
        if self.penalty_loss:
            eye = diag(self.penalty_loss)
        X_T = matrix_transpose(X)

        self.W = matrix_matmul(
            matrix_matmul(
                matrix_inverse(
                    plus(matrix_matmul(X_T, X),
                         multiply(eye,
                                  self.alpha * shape(X)[0]))), X_T), y)
        self.importance_ = sum(self.W, axis=1)
        if self.fit_intercept:
            self.importance_ = self.importance_[1:]
示例#9
0
 def _whatch(self, X, y):
     p = self.predict(X)
     loss = sum(square(minus(p, y)))
     print(loss)
示例#10
0
def predict_vm(ecs_lines, input_lines):
    if input_lines is None or ecs_lines is None:
        return []

    machine_number, machine_name, machine_config, flavors_number, flavors_unique, flavors_config, predict_start, predict_end = parse_input_lines(
        input_lines)
    ecs_logs, training_start, training_end = parse_ecs_lines(
        ecs_lines, flavors_unique)
    prediction = special_check(ecs_logs, flavors_config, flavors_unique,
                               training_start, training_end, predict_start,
                               predict_end)

    if prediction == None:
        prediction = predict_flavors(ecs_logs, flavors_config, flavors_unique,
                                     training_start, training_end,
                                     predict_start, predict_end)

    max_score = None
    best_result = None
    min_count = None

    start = datetime.now()
    i = 0

    percent = [0.99, 0.98]

    while (datetime.now() - start).seconds < 45:
        # p = random.choice(percent)
        p = percent[i % len(percent)]

        # print(p)
        # backpack_count,backpack_result = backpack(machine_number,machine_name,machine_config,flavors_number,flavors_unique,flavors_config,prediction,is_random=True)
        backpack_count, backpack_result = greedy_99_backpack(machine_number,
                                                             machine_name,
                                                             machine_config,
                                                             flavors_number,
                                                             flavors_unique,
                                                             flavors_config,
                                                             prediction,
                                                             score_treadhold=p)

        # backpack_count,backpack_result = greedy_general_backpack(machine_number,machine_name,machine_config,flavors_number,flavors_unique,flavors_config,prediction)

        cpu_rate, mem_rate = get_backpack_score(machine_number, machine_config,
                                                flavors_unique, flavors_config,
                                                backpack_result)

        # find the best score solution
        score = (cpu_rate + mem_rate) / 2.0

        # print(i,score)
        i += 1

        if not max_score or max_score < score:
            max_score = score
            best_result = backpack_result
            min_count = backpack_count

    start = datetime.now()
    while (datetime.now() - start).seconds < 5:

        backpack_count, backpack_result = greedy_general_backpack(
            machine_number, machine_name, machine_config, flavors_number,
            flavors_unique, flavors_config, prediction)

        cpu_rate, mem_rate = get_backpack_score(machine_number, machine_config,
                                                flavors_unique, flavors_config,
                                                backpack_result)

        # find the best score solution
        score = (cpu_rate + mem_rate) / 2.0

        # print(i,score)
        i += 1

        if not max_score or max_score < score:
            max_score = score
            best_result = backpack_result
            min_count = backpack_count

    backpack_count, backpack_result = random_k_times(machine_number,
                                                     machine_name,
                                                     machine_config,
                                                     flavors_number,
                                                     flavors_unique,
                                                     flavors_config,
                                                     prediction,
                                                     k=500)
    cpu_rate, mem_rate = get_backpack_score(machine_number, machine_config,
                                            flavors_unique, flavors_config,
                                            backpack_result)
    # find the best score solution
    score = (cpu_rate + mem_rate) / 2.0
    # print(score)

    if not max_score or max_score < score:
        max_score = score
        best_result = backpack_result
        min_count = backpack_count

    print("max_score-->", max_score)
    backpack_count = min_count
    backpack_result = best_result

    # --------------build output----------------#

    result = []
    result.append('{}'.format(sum(prediction)))
    for i in range(len(prediction)):
        result.append('flavor{} {}'.format(flavors_unique[i], prediction[i]))

    def _convert_machine_string(em):
        s = ""
        for k, v in em.items():
            if v != 0:
                s += " flavor{} {}".format(k, v)
        return s

    for i in range(machine_number):
        c = 1
        if backpack_count[i] != 0:

            result.append('')  # output '\n'

            result.append('{} {}'.format(machine_name[i], backpack_count[i]))
            for em in backpack_result[i]:
                result.append('{}-{}{}'.format(machine_name[i], c,
                                               _convert_machine_string(em)))
                c += 1

    return result
示例#11
0
def predict_flavors(ecs_logs, flavors_config, flavors_unique, training_start,
                    training_end, predict_start, predict_end):
    predict_days = (predict_end - predict_start).days  #check
    hours = ((predict_end - predict_start).seconds / float(3600))
    if hours >= 12:
        predict_days += 1

    skip_days = (predict_start - training_end).days

    # print(skip_days) #checked
    # print(predict_days) #checked

    # sample = resampling(ecs_logs,flavors_unique,training_start,training_end,frequency=predict_days,strike=predict_days,skip=0)
    sample = resampling(ecs_logs,
                        flavors_unique,
                        training_start,
                        training_end,
                        frequency=1,
                        strike=1,
                        skip=0)

    def outlier_handling(sample, method='mean', max_sigma=3):
        assert (method == 'mean' or method == 'dynamic')
        std_ = stdev(sample)
        mean_ = mean(sample, axis=0)
        for i in range(shape(sample)[0]):
            for j in range(shape(sample)[1]):
                if sample[i][j] - mean_[j] > max_sigma * std_[j]:
                    if method == 'mean':
                        sample[i][j] = mean_[j]
                    elif method == 'dynamic':
                        if i < len(sample) / 2.0:
                            sample[i][j] = (mean_[j] + sample[i][j]) / 2.0
        return sample

    # sample = outlier_handling(sample,method='dynamic',max_sigma=3)
    # sample = outlier_handling(sample,method='mean',max_sigma=3.5)

    # from preprocessing import exponential_smoothing
    # sample = exponential_smoothing(exponential_smoothing(sample,alpha=0.2),alpha=0.2)

    skip_days -= 1
    prediction = []
    for i in range(shape(sample)[1]):

        clf = Ridge(alpha=1, fit_intercept=True)

        X = reshape(list(range(len(sample))), (-1, 1))
        y = fancy(sample, None, (i, i + 1))

        X_test = reshape(
            list(range(len(sample),
                       len(sample) + skip_days + predict_days)), (-1, 1))

        X_list = [X]
        X = hstack(X_list)

        X_test_list = [X_test]
        X_test = hstack(X_test_list)

        clf.fit(X, y)
        p = clf.predict(X_test)

        prediction.append(sum(flatten(p)))

    prediction = [int(round(p)) if p > 0 else 0 for p in prediction]

    return prediction