示例#1
0
文件: avar.py 项目: ehthiede/EMUS
def log_average(psis, z, F, g1data, g2data=None, neighbors=None, iat_method=DEFAULT_IAT):
    """Estimates the asymptotic variance in the EMUS estimate of :math:`-log <g_1>/<g_2>`.  If :math:`g_2` data is not provided, it estimates the asymptotic variance in the estimate of :math:`-log <g_1>/<g_2>`.  Input and output is as in average_ratio.  Note that if this is used for free energy differences, the result does not use the Boltzmann factor (i.e. :math:`k_B T=1`).  In that case, resulting variances should be scaled by the Boltzmann factor *squared*.

    """
    # Clean the input and set defaults
    L = len(psis)
    if neighbors is None:
        neighbors = np.outer(np.ones(L), range(L)).astype(int)
    g1data = [np.array(g1i).flatten() for g1i in g1data]
    if g2data is None:
        g2data = [np.ones(np.shape(g1data_i)) for g1data_i in g1data]

    # Compute average of functions in each window.
    g1star = emus._calculate_win_avgs(psis, z, g1data)
    g2star = emus._calculate_win_avgs(psis, z, g2data)
    g1avg = np.dot(g1star, z)
    g2avg = np.dot(g2star, z)

    # Compute partial derivatives
    gI = lm.groupInverse(np.eye(L) - F)
    for i in xrange(L):
        dBdF = np.outer(z, np.dot(gI, g1star / g1avg - g2star / g2avg))
        dBdg1 = z / g1avg
        dBdg2 = -z / g2avg
    iats, variances = _calculate_acovar(
        psis, dBdF, (g1data, g2data), (dBdg1, dBdg2), neighbors=neighbors, iat_method=iat_method
    )
    return iats, -np.log(g1avg / g2avg), variances
示例#2
0
文件: avar.py 项目: ehthiede/EMUS
def partition_functions(psis, z, F, neighbors=None, iat_method=DEFAULT_IAT):
    """Estimates the asymptotic variance of the partition function (normalization constant) for each window.  To get an estimate of the autocovariance of the free energy for each window, multiply the autocovariance of window :math:`i` by :math:` (k_B T / z_i)^2`.

    Parameters
    ----------
    psis : 3D data structure
        The values of the bias functions evaluated each window and timepoint.  See `datastructures <../datastructures.html#data-from-sampling>`__ for more information.
    z : 1D array
        Array containing the normalization constants
    F : 2D array
        Overlap matrix for the first EMUS iteration.
    neighbors : 2D array, optional
        List showing which windows neighbor which.  See neighbors_harmonic in usutils for explanation.
    iat_method : string, optional
        Method used to estimate autocorrelation time.  See the documentation above.

    Returns
    -------
    autocovars : ndarray
        Array of length L (no. windows) where the i'th value corresponds to the autocovariance estimate for :math:`z_i` 
    z_var_contribs : ndarray 
        Two dimensional array, where element i,j corresponds to window j's contribution to the autocovariance of window i.
    z_var_iats : ndarray 
        Two dimensional array, where element i,j corresponds to the autocorrelation time associated with window j's contribution to the autocovariance of window i.
    """

    iat_routine = ac._get_iat_method(iat_method)
    L = len(z)
    z_var_contribs = np.zeros((L, L))
    z_var_iats = np.zeros((L, L))
    if neighbors is None:  # If no neighborlist, assume all windows neighbor
        neighbors = np.outer(np.ones(L), range(L)).astype(int)

    groupInv = lm.groupInverse(np.eye(L) - F)
    # Calculate the partial derivatives of z .
    # (i,j,k)'th element is partial of z_k w.r.t. F_ij
    dzdFij = np.outer(z, groupInv).reshape((L, L, L))

    # Iterate over windows, getting err contribution from sampling in each
    for i, psi_i in enumerate(psis):
        # Data cleaning
        psi_i_arr = np.array(psi_i)
        Lneighb = len(neighbors[i])  # Number of neighbors

        # Normalize psi_j(x_i^t) for all j
        psi_sum = np.sum(psi_i_arr, axis=1)
        normedpsis = np.zeros(psi_i_arr.shape)  # psi_j / sum_k psi_k
        for j in xrange(Lneighb):
            normedpsis[:, j] = psi_i_arr[:, j] / psi_sum

        # Calculate contribution to as. err. for each z_k
        for k in xrange(L):
            dzkdFij = dzdFij[:, :, k]
            err_t_series = np.dot(normedpsis, dzkdFij[i][neighbors[i]])
            iat, mn, sigma = iat_routine(err_t_series)
            z_var_contribs[k, i] = sigma * sigma
            z_var_iats[k, i] = iat
    autocovars = np.sum(z_var_contribs, axis=1)
    return autocovars, z_var_contribs, z_var_iats
示例#3
0
文件: avar.py 项目: ehthiede/EMUS
def average_ratio(psis, z, F, g1data, g2data=None, neighbors=None, iat_method=DEFAULT_IAT):
    """Estimates the asymptotic variance in the estimate of :math:`<g_1>/<g_2>`. If :math:`g_2` is not given, it just calculates the asymptotic variance associated with the average of :math:`g_1`.

    Parameters
    ----------
    psis : 3D data structure
        The values of the bias functions evaluated each window and timepoint.  See `datastructures <../datastructures.html#data-from-sampling>`__ for more information.
    z : 1D array
        Array containing the normalization constants
    F : 2D array
        Overlap matrix for the first EMUS iteration.
    g1data : 2D data structure
        Trajectory of observable in the numerator.  First dimension corresponds to the window index and the second to the point in the trajectory.
    g2data : 2D data structure, optional
        Trajectory of observable in the denominator of the ratio.  
    neighbors : 2D array, optional
        List showing which windows neighbor which.  Element i,j is the j'th neighboring window of window i.
    iat_method : string, optional
        Method used to estimate autocorrelation time.  Choices are 'acor', 'ipce', and 'icce'.

    Returns
    -------
    iats : ndarray
        Array of length L (no. windows) where the i'th value corresponds to the iat for window i's contribution to the error.
    mean : scalar
        Estimate of the ratio
    variances : ndarray
        Array of length L (no. windows) where the i'th value corresponds to the autocovariance corresponding to window i's contribution to the error.  The total autocavariance of the ratio can be calculated by summing over the array.

        """

    # Clean the input and set defaults
    L = len(psis)
    if neighbors is None:
        neighbors = np.outer(np.ones(L), range(L)).astype(int)
    g1data = [np.array(g1i).flatten() for g1i in g1data]
    if g2data is None:
        g2data = [np.ones(np.shape(g1data_i)) for g1data_i in g1data]

    # Compute average of functions in each window.
    g1star = emus._calculate_win_avgs(psis, z, g1data)
    g2star = emus._calculate_win_avgs(psis, z, g2data)
    g1avg = np.dot(g1star, z)
    g2avg = np.dot(g2star, z)

    # Compute partial derivatives
    gI = lm.groupInverse(np.eye(L) - F)
    for i in xrange(L):
        dBdF = np.outer(z, np.dot(gI, g1star - g1avg / g2avg * g2star)) / g2avg
        dBdg1 = z / g2avg
        dBdg2 = -(g1avg / g2avg) * z / g2avg
    iats, variances = _calculate_acovar(
        psis, dBdF, (g1data, g2data), (dBdg1, dBdg2), neighbors=neighbors, iat_method=iat_method
    )
    return iats, g1avg / g2avg, variances