def test__approx_QQ_pol_lst(self):
        ring = PolyRing('x,y,z', True).ext_num_field('t^2 - 3')
        x, y, z = ring.gens()
        a0 = ring.root_gens()[0]
        q2 = sage_QQ(1) / 2
        pol_lst = [x * y * a0 + z**2 + q2 * y**2 - q2 - a0 * x, a0, -a0 * x]
        out_lst = OrbRing.approx_QQ_pol_lst(pol_lst, 1)

        c = sage_QQ(3900231685776981) / 2251799813685248

        print(out_lst)
        assert out_lst[0] == x * y * c + z**2 + q2 * y**2 - q2 - c * x
        assert out_lst[1] == c
        assert out_lst[2] == -c * x
示例#2
0
    def test__subs( self ):

        ring = PolyRing( 'x,y,z', True )
        ring.ext_num_field( 't^2 + 1' )
        ring.ext_num_field( 't^3 + a0' )

        a0, a1 = ring.root_gens()
        x, y, z = ring.gens()

        pol_lst = [x ** 2 + a0 * y * z, y + a1 * z + x ]
        ls = LinearSeries( pol_lst, ring )
        assert str( ls.pol_lst ) == '[x^2 + a0*y*z, x + y + a1*z]'

        ls.subs( {x: x + 1} )
        assert str( ls.pol_lst ) == '[x^2 + a0*y*z + 2*x + 1, x + y + a1*z + 1]'
示例#3
0
    def test__ext_num_field(self):

        ring = PolyRing('x,y,z', True)
        assert str(ring) == 'QQ[x, y, z]'

        ring.ext_num_field('t^2 + t + 1')
        assert str(ring) == 'QQ( <a0|t^2 + t + 1> )[x, y, z]'

        ring.ext_num_field('t^3 + t + a0 + 3')
        assert str(
            ring
        ) == 'QQ( <a0|t^2 + t + 1>, <a1|t^3 + t + a0 + 3>, <a2|t^2 + a1*t + a1^2 + 1> )[x, y, z]'

        a = ring.root_gens()
        x, y, z = ring.gens()

        pol = x**3 + x + a[0] + 3
        assert str(sage_factor(pol)) == '(x - a2) * (x - a1) * (x + a2 + a1)'

        mat = list(pol.sylvester_matrix(y**2 + x**2, x))
        assert str(
            mat
        ) == '[(1, 0, 1, a0 + 3, 0), (0, 1, 0, 1, a0 + 3), (1, 0, y^2, 0, 0), (0, 1, 0, y^2, 0), (0, 0, 1, 0, y^2)]'
示例#4
0
def usecase__roman_circles():
    '''
    We compute circles on a Roman surface.
    '''
    # parametrization of the Roman surface
    #
    p_lst = '[ z^2+x^2+y^2, -z*x, -x*y, z*y ]'

    # we consider the stereographic projection from
    #     S^3 = { x in P^4 | -x0^2+x1^2+x2^2+x3^2+x4^2 = 0 }
    # where the center of projection is (1:0:0:0:1):
    #     (x0:x1:x2:x3:x4) |---> (x0-x4:x1:x2:x3)

    # inverse stereographic projection into 3-sphere
    #
    s_lst = '[ y0^2+y1^2+y2^2+y3^2, 2*y0*y1, 2*y0*y2, 2*y0*y3, -y0^2+y1^2+y2^2+y3^2 ]'

    # compose p_lst with s_lst
    #
    ring = PolyRing('x,y,z,y0,y1,y2,y3')
    x, y, z, y0, y1, y2, y3 = ring.gens()
    p_lst = ring.coerce(p_lst)
    s_lst = ring.coerce(s_lst)
    dct = {y0: p_lst[0], y1: p_lst[1], y2: p_lst[2], y3: p_lst[3]}
    sp_lst = [s.subs(dct) for s in s_lst]
    NSTools.p('sp_lst =')
    for sp in sp_lst:
        NSTools.p('\t\t', sage_factor(sp))
    NSTools.p('gcd(sp_lst) =', sage_gcd(sp_lst))

    # determine base points
    #
    ring = PolyRing('x,y,z', True)
    sp_lst = ring.coerce(sp_lst)
    ls = LinearSeries(sp_lst, ring)
    NSTools.p(ls.get_bp_tree())

    # We expect that the basepoints come from the intersection
    # of the Roman surface with the absolute conic:
    #    A = { (y0:y1:y2:y3) in P^3 | y0=y1^2+y2^2+y3^2 = 0 }
    #
    # Circles are the image via p_lst of lines that pass through
    # complex conjugate points.
    #
    ring = PolyRing('x,y,z',
                    False)  # reinitialize ring with updated numberfield
    a0, a1, a2, a3 = ring.root_gens()

    # a0=(1-I*sqrt(3)) with conjugate a0-1 and minimal polynomial t^2-t+1

    # we compute candidate classes of circles
    #
    h = Div.new('4e0-e1-e2-e3-e4-e5-e6-e7-e8')
    div_lst = get_divs(h, 2, -2, False) + get_divs(h, 2, -1, False)
    NSTools.p('Classes of circles up to permutation:')
    for c in div_lst:
        NSTools.p('\t\t', c)

    # We recover the preimages of circles in the Roman surface
    # under the map p_lst, by constructing for each candidate
    # class the corresponding linear series.

    # 2e0-e1-e2-e3-e4-e5-e6-e7-e8
    b = [(a0 - 1, -a0), (-a0, a0 - 1)]
    b += [(-a0 + 1, a0), (a0, -a0 + 1)]
    b += [(a0 - 1, a0), (-a0, -a0 + 1)]
    b += [(-a0 + 1, -a0), (a0, a0 - 1)]
    bp_tree = BasePointTree()
    for i in range(6):
        bp_tree.add('z', b[i], 1)
    NSTools.p('basepoints =', b)
    NSTools.p(LinearSeries.get([2], bp_tree))

    # e0-e1-e2
    b = [(a0 - 1, -a0), (-a0, a0 - 1)]
    bp_tree = BasePointTree()
    bp = bp_tree.add('z', b[0], 1)
    bp = bp_tree.add('z', b[1], 1)
    NSTools.p('basepoints =', b)
    NSTools.p(LinearSeries.get([1], bp_tree))

    # e0-e3-e4
    b = [(-a0 + 1, a0), (a0, -a0 + 1)]
    bp_tree = BasePointTree()
    bp = bp_tree.add('z', b[0], 1)
    bp = bp_tree.add('z', b[1], 1)
    NSTools.p('basepoints =', b)
    NSTools.p(LinearSeries.get([1], bp_tree))

    # e0-e5-e6
    b = [(a0 - 1, a0), (-a0, -a0 + 1)]
    bp_tree = BasePointTree()
    bp = bp_tree.add('z', b[0], 1)
    bp = bp_tree.add('z', b[1], 1)
    NSTools.p('basepoints =', b)
    NSTools.p(LinearSeries.get([1], bp_tree))

    # e0-e7-e8
    b = [(-a0 + 1, -a0), (a0, a0 - 1)]
    bp_tree = BasePointTree()
    bp = bp_tree.add('z', b[0], 1)
    bp = bp_tree.add('z', b[1], 1)
    NSTools.p('basepoints =', b)
    NSTools.p(LinearSeries.get([1], bp_tree))

    return
示例#5
0
def CH1_cyclide():
    '''
    Creates povray image of a CH1 cyclide, which is
    an inversion of a Circular Hyperboloid of 1 sheet.    
    '''

    # Construct a trigonometric parametrization by rotating a circle.
    r, R = 1, 1
    c0, s0, c1, s1 = sage_var('c0,s0,c1,s1')
    x, y, v, w, a0 = sage_var('x,y,v,w,a0')
    q2 = sage_QQ(1) / 2
    MX = sage_matrix([(1, 0, 0), (0, c1, s1), (0, -s1, c1)])
    MXc = MX.subs({c1: a0, s1: a0})  # a0=1/sqrt(2)=cos(pi/4)=sin(pi/4)
    MZ = sage_matrix([(c1, s1, 0), (-s1, c1, 0), (0, 0, 1)])
    V = sage_vector([r * c0, 0, r * s0])
    V = MXc * V
    V[0] = V[0] + R
    pmz_AB_lst = list(MZ * V)
    OrbTools.p('V =', V)
    OrbTools.p('pmz_AB_lst =', pmz_AB_lst)
    for pmz in pmz_AB_lst:
        OrbTools.p('\t\t', sage_factor(pmz))

    # Convert the trigonometric parametrization to a rational parametrization
    # We convert via the following formulas,
    #
    #     cos(s) = (y^2-x^2) / (y^2+x^2)
    #     sin(s) = 2*x*y / (y^2+x^2)
    #     y=1; x = arctan( s/2 )
    #
    C0 = (y**2 - x**2) / (y**2 + x**2)
    S0 = 2 * x * y / (y**2 + x**2)
    C1 = (w**2 - v**2) / (w**2 + v**2)
    S1 = 2 * v * w / (w**2 + v**2)
    den = (y**2 + x**2) * (w**2 + v**2)
    dct = {c0: C0, s0: S0, c1: C1, s1: S1}
    pmz_lst = [den] + [(elt.subs(dct) * den).simplify_full()
                       for elt in list(MZ * V)]
    OrbTools.p('pmz_lst =', pmz_lst)
    for pmz in pmz_lst:
        OrbTools.p('\t\t', sage_factor(pmz))

    # do a basepoint analysis on the rational parametrization
    # The True argument is for resetting the number field to QQ!
    ring = PolyRing('x,y,v,w', True).ext_num_field('t^2-1/2')
    ls = LinearSeries([str(pmz) for pmz in pmz_lst], ring)
    OrbTools.p(ls.get_bp_tree())

    # construct linear series for families of conics
    ring = PolyRing(
        'x,y,v,w')  # construct polynomial ring over new ground field
    OrbTools.p(ring)
    x, y, v, w = ring.gens()
    a0, a1 = ring.root_gens()

    p1 = ['xv', (0, 2 * a0 * a1)]
    p2 = ['xv', (0, -2 * a0 * a1)]
    p3 = ['xv', (a1, 2 * a0 * a1)]
    p4 = ['xv', (-a1, -2 * a0 * a1)]

    bpt_1234 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_1234.add(p1[0], p1[1], 1)
    bpt_1234.add(p2[0], p2[1], 1)
    bpt_1234.add(p3[0], p3[1], 1)
    bpt_1234.add(p4[0], p4[1], 1)

    bpt_12 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_12.add(p1[0], p1[1], 1)
    bpt_12.add(p2[0], p2[1], 1)

    bpt_34 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_34.add(p3[0], p3[1], 1)
    bpt_34.add(p4[0], p4[1], 1)

    ls_22 = LinearSeries.get([2, 2], bpt_1234)  # |2(l1+l2)-e1-e2-e3-e4|
    ls_21 = LinearSeries.get([2, 1], bpt_1234)
    ls_12 = LinearSeries.get([1, 2], bpt_1234)
    ls_11a = LinearSeries.get([1, 1], bpt_12)
    ls_11b = LinearSeries.get([1, 1], bpt_34)

    OrbTools.p('linear series 22 =\n', ls_22)
    OrbTools.p('linear series 21 =\n', ls_21)
    OrbTools.p('linear series 12 =\n', ls_12)
    OrbTools.p('linear series 11a =\n', ls_11a)
    OrbTools.p('linear series 11b =\n', ls_11b)

    # compute reparametrization from the linear series of families
    ring = PolyRing(
        'x,y,v,w,c0,s0,c1,s1')  # construct polynomial ring with new generators
    OrbTools.p(ring)
    x, y, v, w, c0, s0, c1, s1 = ring.gens()
    a0, a1 = ring.root_gens()
    pmz_AB_lst = [1] + ring.coerce(pmz_AB_lst)
    pmz_lst = ring.coerce(pmz_lst)

    X = 1 - s0
    Y = c0
    V = 1 - s1
    W = c1
    CB_dct = {
        x: X,
        y: Y,
        v: W * X - 2 * a0 * V * Y,
        w: V * X + 2 * a0 * W * Y
    }
    pmz_CB_lst = [pmz.subs(CB_dct) for pmz in pmz_lst]  # CB  11b

    # output
    OrbTools.p('pmz_AB_lst =\n', pmz_AB_lst)
    OrbTools.p('pmz_CB_lst =\n', pmz_CB_lst)

    # approximate by map defined over rational numbers
    ci_idx = 0  # index defining the complex embedding
    OrbTools.p('complex embeddings =')
    for i in range(len(a0.complex_embeddings())):
        a0q = OrbRing.approx_QQ_coef(a0, i)
        OrbTools.p('\t\t' + str(i) + ' =', a0q, sage_n(a0q))
    pmz_AB_lst = OrbRing.approx_QQ_pol_lst(pmz_AB_lst, ci_idx)
    pmz_CB_lst = OrbRing.approx_QQ_pol_lst(pmz_CB_lst, ci_idx)

    # mathematica input
    ms = ''
    for pmz, AB in [(pmz_lst, 'ZZ'), (pmz_AB_lst, 'AB'), (pmz_CB_lst, 'CB')]:
        s = 'pmz' + AB + '=' + str(pmz) + ';'
        s = s.replace('[', '{').replace(']', '}')
        ms += '\n' + s
    OrbTools.p('Mathematica input =', ms)

    # PovInput ring cyclide
    #
    pin = PovInput()

    pin.path = './' + get_time_str() + '_CH1_cyclide/'
    pin.fname = 'orb'
    pin.scale = 1
    pin.cam_dct['location'] = (0, -5, 0)
    pin.cam_dct['lookat'] = (0, 0, 0)
    pin.cam_dct['rotate'] = (20, 0, 0)
    pin.shadow = True
    pin.light_lst = [(1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, 0, 0), (0, -1, 0),
                     (0, 0, -1), (10, 0, 0), (0, 10, 0), (0, 0, 10),
                     (-10, 0, 0), (0, -10, 0), (0, 0, -10)]
    pin.axes_dct['show'] = False
    pin.axes_dct['len'] = 1.2
    pin.height = 400
    pin.width = 800
    pin.quality = 11
    pin.ani_delay = 10

    pin.impl = None

    pin.pmz_dct['A'] = (pmz_AB_lst, 0)
    pin.pmz_dct['B'] = (pmz_AB_lst, 1)
    pin.pmz_dct['C'] = (pmz_CB_lst, 0)

    pin.pmz_dct['FA'] = (pmz_AB_lst, 0)
    pin.pmz_dct['FB'] = (pmz_AB_lst, 1)
    pin.pmz_dct['FC'] = (pmz_CB_lst, 0)

    v0_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)]

    v1_lst_A = [(sage_QQ(i) / 180) * sage_pi for i in range(180, 360, 10)]
    v1_lst_B = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 180, 10)]
    v1_lst_C = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 180, 10)]

    v1_lst_FA = [(sage_QQ(i) / 180) * sage_pi for i in range(180, 360, 2)]
    v1_lst_FB = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 180, 2)]
    v1_lst_FC = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 180, 2)]

    prec = 50

    pin.curve_dct['A'] = {
        'step0': v0_lst,
        'step1': v1_lst_A,
        'prec': prec,
        'width': 0.03
    }
    pin.curve_dct['B'] = {
        'step0': v0_lst,
        'step1': v1_lst_B,
        'prec': prec,
        'width': 0.03
    }
    pin.curve_dct['C'] = {
        'step0': v0_lst,
        'step1': v1_lst_C,
        'prec': prec,
        'width': 0.03
    }

    pin.curve_dct['FA'] = {
        'step0': v0_lst,
        'step1': v1_lst_FA,
        'prec': prec,
        'width': 0.02
    }
    pin.curve_dct['FB'] = {
        'step0': v0_lst,
        'step1': v1_lst_FB,
        'prec': prec,
        'width': 0.02
    }
    pin.curve_dct['FC'] = {
        'step0': v0_lst,
        'step1': v1_lst_FC,
        'prec': prec,
        'width': 0.02
    }

    col_A = (0.6, 0.4, 0.1, 0.0)
    col_B = (0.1, 0.15, 0.0, 0.0)
    col_C = (0.2, 0.3, 0.2, 0.0)
    colFF = (0.1, 0.1, 0.1, 0.0)

    pin.text_dct['A'] = [True, col_A, 'phong 0.2 phong_size 5']
    pin.text_dct['B'] = [True, col_B, 'phong 0.2 phong_size 5']
    pin.text_dct['C'] = [True, col_C, 'phong 0.2 phong_size 5']
    pin.text_dct['FA'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FB'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FC'] = [True, colFF, 'phong 0.2 phong_size 5']

    # raytrace image/animation
    create_pov(pin, ['A', 'B', 'C'])
    create_pov(pin, ['A', 'B', 'C', 'FA', 'FB', 'FC'])
    create_pov(pin, ['A', 'B', 'FA', 'FB'])
    create_pov(pin, ['B', 'C', 'FA', 'FB'])
示例#6
0
def dp6_smooth():
    '''
    Creates povray image of the projection of a smooth sextic del Pezzo 
    surface in S^5. This surface contains 3 families of conics that 
    form a hexagonal web. 
    '''

    # compute parametrizations of canonical model
    a0 = PolyRing('x,y,v,w', True).ext_num_field('t^2 + 1').root_gens()[0]
    bp_tree = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bp = bp_tree.add('xv', (-a0, a0), 1)
    bp = bp_tree.add('xv', (a0, -a0), 1)
    ls_AB = LinearSeries.get([2, 2], bp_tree)
    ls_CB = LinearSeries.get([1, 1], bp_tree)

    # compute surface in quadric of signature (6,1)
    c_lst = [-1, -1, 0, 0, 0, -1, 1, 0, -1, -1, -1]
    dct = get_surf(ls_AB, (6, 1), c_lst)

    # compute projection to P^3
    U, J = dct['UJ']
    U.swap_rows(0, 6)
    J.swap_columns(0, 6)
    J.swap_rows(0, 6)
    approxU = approx_QQ(U)
    P = get_prj_mat(4, 7, 0)
    P[0, 6] = -1
    P[3, 3] = 0
    P[3, 4] = 1
    P = P * approxU
    f_xyz, pmz_AB_lst = get_proj(dct['imp_lst'], dct['pmz_lst'], P)

    # compute reparametrization
    ring = PolyRing(
        'x,y,v,w,c0,s0,c1,s1')  # construct polynomial ring with new generators
    x, y, v, w, c0, s0, c1, s1 = ring.gens()
    X = 1 - s0
    Y = c0
    # see get_S1xS1_pmz()
    V = 1 - s1
    W = c1
    CB_dct = {x: X, y: Y, v: X * W + Y * V, w: X * V - Y * W}
    pmz_CB_lst = [p.subs(CB_dct) for p in ring.coerce(ls_AB.pol_lst)]
    pmz_CB_lst = list(P * dct['Q'] * sage_vector(pmz_CB_lst))

    # set PovInput as container
    # put very low quality for testing purposes
    pin = PovInput()

    pin.path = './' + get_time_str() + '_dp6_smooth/'
    pin.fname = 'orb'
    pin.scale = 1
    pin.cam_dct['location'] = (0, 0, sage_QQ(-21) / 10)
    pin.cam_dct['lookat'] = (0, 0, 0)
    pin.cam_dct['rotate'] = (310, 0, 0)
    pin.shadow = True
    pin.light_lst = [(0, 0, -4), (0, -4, 0), (-4, 0, 0), (0, 4, 0), (4, 0, 0),
                     (-5, -5, -5), (5, 5, -5), (-5, 5, -5), (5, -5, -5)]
    pin.axes_dct['show'] = False
    pin.axes_dct['len'] = 1.2
    pin.height = 400
    pin.width = 800
    pin.quality = 11
    pin.ani_delay = 1
    pin.impl = None

    v0_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)]
    v1_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 15)]
    v1_F_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 1)]

    pin.pmz_dct['A'] = (pmz_AB_lst, 0)
    pin.pmz_dct['B'] = (pmz_AB_lst, 1)
    pin.pmz_dct['C'] = (pmz_CB_lst, 0)
    pin.pmz_dct['FA'] = (pmz_AB_lst, 0)
    pin.pmz_dct['FB'] = (pmz_AB_lst, 1)
    pin.pmz_dct['FC'] = (pmz_CB_lst, 0)

    pin.curve_dct['A'] = {
        'step0': v0_lst,
        'step1': v1_lst,
        'prec': 10,
        'width': 0.018
    }
    pin.curve_dct['B'] = {
        'step0': v0_lst,
        'step1': v1_lst,
        'prec': 10,
        'width': 0.018
    }
    pin.curve_dct['C'] = {
        'step0': v0_lst,
        'step1': v1_lst,
        'prec': 10,
        'width': 0.018
    }
    pin.curve_dct['FA'] = {
        'step0': v0_lst,
        'step1': v1_F_lst,
        'prec': 10,
        'width': 0.003
    }
    pin.curve_dct['FB'] = {
        'step0': v0_lst,
        'step1': v1_F_lst,
        'prec': 10,
        'width': 0.003
    }
    pin.curve_dct['FC'] = {
        'step0': v0_lst,
        'step1': v1_F_lst,
        'prec': 10,
        'width': 0.003
    }

    # ( 0.4, 0.0, 0.0, 0.0 ), ( 0.2, 0.3, 0.2, 0.0 ), ( 0.8, 0.6, 0.2, 0.0 )
    col_A = rgbt2pov((75, 102, 0, 0))  # green /
    col_B = rgbt2pov((74, 33, 0, 0))  # brown -
    col_C = rgbt2pov((28, 125, 154, 0))  # blue \
    colFF = rgbt2pov((179, 200, 217, 0))  # light blue

    pin.text_dct['A'] = [True, col_A, 'phong 0.2']
    pin.text_dct['B'] = [True, col_B, 'phong 0.2']
    pin.text_dct['C'] = [True, col_C, 'phong 0.2']
    pin.text_dct['FA'] = [True, colFF, 'phong 0.8']
    pin.text_dct['FB'] = [True, colFF, 'phong 0.8']
    pin.text_dct['FC'] = [True, colFF, 'phong 0.8']

    # raytrace image/animation
    create_pov(pin, ['A', 'B', 'C'])
    create_pov(pin, ['A', 'B', 'C', 'FA', 'FB', 'FC'])
    create_pov(pin, ['A', 'FA', 'FB', 'FC'])
    create_pov(pin, ['B', 'FA', 'FB', 'FC'])
    create_pov(pin, ['C', 'FA', 'FB', 'FC'])
示例#7
0
def perseus_cyclide():
    '''
    Creates povray image of the Perseus cyclide.
    '''

    # We first construct a trigonometric parametrization
    # by rotating a circle.
    #     cos(pi/3) = 1/2
    #     sin(pi/3) = sqrt(3)/2
    #
    r, R = 1, 2
    c0, s0, c1, s1 = sage_var('c0,s0,c1,s1')
    x, y, v, w, a0 = sage_var('x,y,v,w,a0')
    q2 = sage_QQ(1) / 2
    MZ = sage_matrix([(c1, s1, 0), (-s1, c1, 0), (0, 0, 1)])
    MZc = MZ.subs({c1: q2, s1: q2 * a0})
    V = sage_vector([r * c0, 0, r * s0])
    V = MZc * V
    V[0] = V[0] + R
    pmz_AB_lst = list(MZ * V)

    OrbTools.p('V =', V)
    OrbTools.p('pmz_AB_lst =', pmz_AB_lst)
    for pmz in pmz_AB_lst:
        OrbTools.p('\t\t', sage_factor(pmz))

    # We convert the trigonometric parametrization to a
    # rational parametrization, via the following formulas:
    #
    #     cos(s) = (y^2-x^2) / (y^2+x^2)
    #     sin(s) = 2*x*y / (y^2+x^2)
    #     y=1; x = arctan( s/2 )
    #
    C0 = (y**2 - x**2) / (y**2 + x**2)
    S0 = 2 * x * y / (y**2 + x**2)
    C1 = (w**2 - v**2) / (w**2 + v**2)
    S1 = 2 * v * w / (w**2 + v**2)
    den = (y**2 + x**2) * (w**2 + v**2)
    dct = {c0: C0, s0: S0, c1: C1, s1: S1}
    pmz_lst = [den] + [(elt.subs(dct) * den).simplify_full()
                       for elt in list(MZ * V)]
    OrbTools.p('pmz_lst =', pmz_lst)
    for pmz in pmz_lst:
        OrbTools.p('\t\t', sage_factor(pmz))

    # do a basepoint analysis on the rational parametrization
    #
    ring = PolyRing('x,y,v,w', True).ext_num_field('t^2-3')
    ls = LinearSeries([str(pmz) for pmz in pmz_lst], ring)
    OrbTools.p(ls.get_bp_tree())

    # construct linear series for families of conics
    #
    ring = PolyRing(
        'x,y,v,w')  # construct polynomial ring over new ground field
    OrbTools.p(ring)
    x, y, v, w = ring.gens()
    a0, a1, a2, a3 = ring.root_gens()

    p1 = ['xv', (-a3, a1)]
    p2 = ['xv', (-a2, -a1)]
    p3 = ['xv', (a3, a1)]
    p4 = ['xv', (a2, -a1)]

    bpt_1234 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_1234.add(p1[0], p1[1], 1)
    bpt_1234.add(p2[0], p2[1], 1)
    bpt_1234.add(p3[0], p3[1], 1)
    bpt_1234.add(p4[0], p4[1], 1)

    bpt_12 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_12.add(p1[0], p1[1], 1)
    bpt_12.add(p2[0], p2[1], 1)

    bpt_34 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_34.add(p3[0], p3[1], 1)
    bpt_34.add(p4[0], p4[1], 1)

    ls_22 = LinearSeries.get([2, 2], bpt_1234)
    ls_21 = LinearSeries.get([2, 1], bpt_1234)
    ls_12 = LinearSeries.get([1, 2], bpt_1234)
    ls_11a = LinearSeries.get([1, 1], bpt_12)
    ls_11b = LinearSeries.get([1, 1], bpt_34)

    OrbTools.p('linear series 22 =\n', ls_22)
    OrbTools.p('linear series 21 =\n', ls_21)
    OrbTools.p('linear series 12 =\n', ls_12)
    OrbTools.p('linear series 11a =\n', ls_11a)
    OrbTools.p('linear series 11b =\n', ls_11b)

    # compute reparametrization from the linear series of families
    ring = PolyRing('x,y,v,w,c0,s0,c1,s1')
    OrbTools.p(ring)
    x, y, v, w, c0, s0, c1, s1 = ring.gens()
    a0, a1, a2, a3 = ring.root_gens()
    pmz_AB_lst = [1] + ring.coerce(pmz_AB_lst)
    pmz_lst = ring.coerce(pmz_lst)

    q2 = sage_QQ(1) / 2
    a = 2 * a0 / 3
    b = (-a0 * a1 / 3 - q2) * a3
    c = (a0 * a1 / 3 - q2) * a2
    d = (a1 / 2 - a0 / 3) * a3
    e = (-a1 / 2 - a0 / 3) * a2
    bc = b + c
    de = d + e

    X = 1 - s0
    Y = c0
    V = 1 - s1
    W = c1
    CB_dct = {
        x: X,
        y: Y,
        v: W * X + bc * W * Y - de * V * Y,
        w: V * X + bc * V * Y + de * W * Y
    }
    DB_dct = {
        x: X,
        y: Y,
        v: W * X - bc * W * Y + de * V * Y,
        w: V * X - bc * V * Y - de * W * Y
    }
    EB_dct = {
        x: X,
        y: Y,
        v: W * X**2 + W * Y**2 - a * V * Y**2,
        w: V * X**2 + V * Y**2 + a * W * Y**2
    }
    pmz_CB_lst = [pmz.subs(CB_dct) for pmz in pmz_lst]  # CB  11a
    pmz_DB_lst = [pmz.subs(DB_dct) for pmz in pmz_lst]  # CB  11b
    pmz_EB_lst = [pmz.subs(EB_dct) for pmz in pmz_lst]  # CB  21

    # output
    OrbTools.p('pmz_AB_lst =\n', pmz_AB_lst)
    OrbTools.p('pmz_CB_lst =\n', pmz_CB_lst)
    OrbTools.p('pmz_DB_lst =\n', pmz_DB_lst)
    OrbTools.p('pmz_EB_lst =\n', pmz_EB_lst)

    # approximate by map defined over rational numbers
    ci_idx = 5  # index defining the complex embedding
    pmz_AB_lst = OrbRing.approx_QQ_pol_lst(pmz_AB_lst, ci_idx)
    pmz_CB_lst = OrbRing.approx_QQ_pol_lst(pmz_CB_lst, ci_idx)
    pmz_DB_lst = OrbRing.approx_QQ_pol_lst(pmz_DB_lst, ci_idx)
    pmz_EB_lst = OrbRing.approx_QQ_pol_lst(pmz_EB_lst, ci_idx)

    # mathematica input
    ms = ''
    for pmz, AB in [(pmz_lst, 'ZZ'), (pmz_AB_lst, 'AB'), (pmz_CB_lst, 'CB'),
                    (pmz_DB_lst, 'DB'), (pmz_EB_lst, 'EB')]:
        s = 'pmz' + AB + '=' + str(pmz) + ';'
        s = s.replace('[', '{').replace(']', '}')
        ms += '\n' + s
    OrbTools.p('Mathematica input =', ms)

    # PovInput ring cyclide
    #
    pin = PovInput()

    pin.path = './' + get_time_str() + '_perseus_cyclide/'
    pin.fname = 'orb'
    pin.scale = 1
    pin.cam_dct['location'] = (0, 7, 0)
    pin.cam_dct['lookat'] = (0, 0, 0)
    pin.cam_dct['rotate'] = (45, 0, 0)
    pin.shadow = True
    pin.light_lst = [(0, 0, -10), (0, -10, 0), (-10, 0, 0), (0, 0, 10),
                     (0, 10, 0), (10, 0, 0)]
    pin.axes_dct['show'] = False
    pin.axes_dct['len'] = 1.2
    pin.height = 400
    pin.width = 800
    pin.quality = 11
    pin.ani_delay = 10

    pin.impl = None

    pin.pmz_dct['A'] = (pmz_AB_lst, 0)
    pin.pmz_dct['B'] = (pmz_AB_lst, 1)
    pin.pmz_dct['C'] = (pmz_CB_lst, 0)
    pin.pmz_dct['D'] = (pmz_DB_lst, 0)
    pin.pmz_dct['E'] = (pmz_EB_lst, 0)

    pin.pmz_dct['FA'] = (pmz_AB_lst, 0)
    pin.pmz_dct['FB'] = (pmz_AB_lst, 1)
    pin.pmz_dct['FC'] = (pmz_CB_lst, 0)
    pin.pmz_dct['FD'] = (pmz_DB_lst, 0)
    pin.pmz_dct['FE'] = (pmz_EB_lst, 0)

    v0_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)]
    v1_lst_A = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)]  # 5
    v1_lst_B = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 15)]
    v1_lst_C = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 36)]
    v1_lst_D = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 36)]
    v1_lst_E = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)]  # 5

    v1_lst_F = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 1)]

    prec = 50

    pin.curve_dct['A'] = {
        'step0': v0_lst,
        'step1': v1_lst_A,
        'prec': prec,
        'width': 0.04
    }
    pin.curve_dct['B'] = {
        'step0': v0_lst,
        'step1': v1_lst_B,
        'prec': prec,
        'width': 0.04
    }
    pin.curve_dct['C'] = {
        'step0': v0_lst,
        'step1': v1_lst_C,
        'prec': prec,
        'width': 0.05
    }
    pin.curve_dct['D'] = {
        'step0': v0_lst,
        'step1': v1_lst_D,
        'prec': prec,
        'width': 0.05
    }
    pin.curve_dct['E'] = {
        'step0': v0_lst,
        'step1': v1_lst_E,
        'prec': prec,
        'width': 0.04
    }

    pin.curve_dct['FA'] = {
        'step0': v0_lst,
        'step1': v1_lst_F,
        'prec': prec,
        'width': 0.01
    }
    pin.curve_dct['FB'] = {
        'step0': v0_lst,
        'step1': v1_lst_F,
        'prec': prec,
        'width': 0.01
    }
    pin.curve_dct['FC'] = {
        'step0': v0_lst,
        'step1': v1_lst_F,
        'prec': prec,
        'width': 0.01
    }
    pin.curve_dct['FD'] = {
        'step0': v0_lst,
        'step1': v1_lst_F,
        'prec': prec,
        'width': 0.01
    }
    pin.curve_dct['FE'] = {
        'step0': v0_lst,
        'step1': v1_lst_F,
        'prec': prec,
        'width': 0.01
    }

    col_A = (0.6, 0.0, 0.0, 0.0)  # red
    col_B = (0.8, 0.6, 0.2, 0.0)  # beige
    col_C = (0.6, 0.0, 0.0, 0.0
             )  # red   *** rgbt2pov( ( 74, 33, 0, 0 ) )     # brown
    col_D = (0.2, 0.6, 0.0, 0.0
             )  # green *** rgbt2pov( ( 28, 125, 154, 0 ) )  # blue
    col_E = (0.2, 0.6, 0.0, 0.0)  # green
    colFF = (0.1, 0.1, 0.1, 0.0)

    pin.text_dct['A'] = [True, col_A, 'phong 0.2 phong_size 5']
    pin.text_dct['B'] = [True, col_B, 'phong 0.2 phong_size 5']
    pin.text_dct['C'] = [True, col_C, 'phong 0.2 phong_size 5']
    pin.text_dct['D'] = [True, col_D, 'phong 0.2 phong_size 5']
    pin.text_dct['E'] = [True, col_E, 'phong 0.2 phong_size 5']

    pin.text_dct['FA'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FB'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FC'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FD'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FE'] = [True, colFF, 'phong 0.2 phong_size 5']

    # raytrace image/animation
    create_pov(pin, ['C', 'D', 'FC', 'FD'])
    create_pov(pin, ['A', 'B', 'FC', 'FD'])
    create_pov(pin, ['E', 'B', 'FC', 'FD'])
示例#8
0
def blum_cyclide():
    '''
    Construct a povray image of 6 families of circles on a smooth Darboux cyclide.
    This surface is also known as the Blum cyclide.
    '''

    # construct dct
    a0 = PolyRing( 'x,y,v,w', True ).ext_num_field( 't^2 + 1' ).root_gens()[0]  # i

    bpt_1234 = BasePointTree( ['xv', 'xw', 'yv', 'yw'] )
    bpt_1234.add( 'xv', ( -1 * a0, 1 * a0 ), 1 )  # e1
    bpt_1234.add( 'xv', ( 1 * a0, -1 * a0 ), 1 )  # e2
    bpt_1234.add( 'xw', ( -2 * a0, 2 * a0 ), 1 )  # e3
    bpt_1234.add( 'xw', ( 2 * a0, -2 * a0 ), 1 )  # e4

    bpt_12 = BasePointTree( ['xv', 'xw', 'yv', 'yw'] )
    bpt_12.add( 'xv', ( -1 * a0, 1 * a0 ), 1 )  # e1
    bpt_12.add( 'xv', ( 1 * a0, -1 * a0 ), 1 )  # e2

    bpt_34 = BasePointTree( ['xv', 'xw', 'yv', 'yw'] )
    bpt_34.add( 'xw', ( -2 * a0, 2 * a0 ), 1 )  # e3
    bpt_34.add( 'xw', ( 2 * a0, -2 * a0 ), 1 )  # e4

    ls_22 = LinearSeries.get( [2, 2], bpt_1234 )  # |2(l1+l2)-e1-e2-e3-e4|
    ls_21 = LinearSeries.get( [2, 1], bpt_1234 )
    ls_12 = LinearSeries.get( [1, 2], bpt_1234 )
    ls_11a = LinearSeries.get( [1, 1], bpt_12 )
    ls_11b = LinearSeries.get( [1, 1], bpt_34 )

    OrbTools.p( 'linear series 22 =\n', ls_22 )
    OrbTools.p( 'linear series 21 =\n', ls_21 )
    OrbTools.p( 'linear series 12 =\n', ls_12 )
    OrbTools.p( 'linear series 11a =\n', ls_11a )
    OrbTools.p( 'linear series 11b =\n', ls_11b )

    sig = ( 4, 1 )
    pol_lst = ls_22.get_implicit_image()

    # determine signature
    x_lst = sage_PolynomialRing( sage_QQ, [ 'x' + str( i ) for i in range( sum( sig ) )] ).gens()
    for pol in pol_lst:

        if pol.degree() == 2:
            M = sage_invariant_theory.quadratic_form( pol, x_lst ).as_QuadraticForm().matrix()
            D, V = sage_matrix( sage_QQ, M ).eigenmatrix_right()  # D has first all negative values on diagonal
            cur_sig = ( len( [ d for d in D.diagonal() if d < 0 ] ), len( [ d for d in D.diagonal() if d > 0 ] ) )
        else:
            cur_sig = '[no signature]'
        OrbTools.p( '\t\t', pol, cur_sig )

    # obtain surface in sphere
    coef_lst = [0, -1, -1]
    dct = get_surf( ls_22, sig, coef_lst )

    # construct projection matrix P
    U, J = dct['UJ']
    U.swap_rows( 0, 4 )
    J.swap_columns( 0, 4 )
    J.swap_rows( 0, 4 )
    assert dct['M'] == approx_QQ( U.T * J * U )
    approxU = approx_QQ( U )
    P = sage_identity_matrix( 5 ).submatrix( 0, 0, 4, 5 )
    P[0, 4] = -1;
    P = P * approxU
    OrbTools.p( ' approx_QQ( U ) =', list( approx_QQ( U ) ) )
    OrbTools.p( ' approx_QQ( J ) =', list( approx_QQ( J ) ) )
    OrbTools.p( ' P              =', list( P ) )

    # call get_proj
    f_xyz, pmz_AB_lst = get_proj( dct['imp_lst'], dct['pmz_lst'], P )
    f_xyz_deg_lst = [f_xyz.degree( sage_var( v ) ) for v in ['x', 'y', 'z']]

    # compute reparametrization
    ring = PolyRing( 'x,y,v,w,c0,s0,c1,s1' )  # construct polynomial ring with new generators
    p_lst = ring.coerce( ls_22.pol_lst )
    x, y, v, w, c0, s0, c1, s1 = ring.gens()
    X = 1 - s0; Y = c0;  # see get_S1xS1_pmz()
    V = 1 - s1; W = c1;
    CB_dct = { x:X, y:Y, v:X * W + Y * V, w: X * V - Y * W }
    DB_dct = { x:X, y:Y, v:4 * X * W - Y * V, w: X * V + Y * W }
    EB_dct = { x:X, y:Y, v:40 * W * X ** 2 + 25 * W * Y ** 2 + 24 * V * X * Y, w:40 * V * X ** 2 + 16 * V * Y ** 2 - 15 * W * X * Y  }
    AF_dct = { x:-10 * Y * V ** 2 - 25 * Y * W ** 2 + 9 * X * V * W, y:15 * X * V ** 2 + 24 * X * W ** 2 - 15 * Y * V * W, v:V, w:W  }
    pmz_CB_lst = list( P * sage_vector( [ p.subs( CB_dct ) for p in p_lst] ) )
    pmz_DB_lst = list( P * sage_vector( [ p.subs( DB_dct ) for p in p_lst] ) )
    pmz_EB_lst = list( P * sage_vector( [ p.subs( EB_dct ) for p in p_lst] ) )
    pmz_AF_lst = list( P * sage_vector( [ p.subs( AF_dct ) for p in p_lst] ) )


    # output
    OrbTools.p( 'f_xyz =', f_xyz_deg_lst, '\n', f_xyz )
    OrbTools.p( 'pmz_AB_lst =\n', pmz_AB_lst )
    OrbTools.p( 'pmz_CB_lst =\n', pmz_CB_lst )
    OrbTools.p( 'pmz_DB_lst =\n', pmz_DB_lst )
    OrbTools.p( 'pmz_EB_lst =\n', pmz_EB_lst )
    OrbTools.p( 'pmz_AF_lst =\n', pmz_AF_lst )

    # mathematica
    pmz_lst = [ ( pmz_AB_lst, 'AB' ),
                ( pmz_CB_lst, 'CB' ),
                ( pmz_DB_lst, 'DB' ),
                ( pmz_EB_lst, 'EB' ),
                ( pmz_AF_lst, 'AF' )]

    OrbTools.p( 'Mathematica input for ParametricPlot3D:' )
    for pmz, AB in pmz_lst:
        s = 'pmz' + AB + '=' + str( pmz )
        s = s.replace( '[', '{' ).replace( ']', '}' )
        print( s )

    # PovInput for Blum cyclide
    #
    pin = PovInput()
    pin.path = './' + get_time_str() + '_blum_cyclide/'
    pin.fname = 'orb'
    pin.scale = 1
    pin.cam_dct['location'] = ( 0, -7, 0 )
    pin.cam_dct['lookat'] = ( 0, 0, 0 )
    pin.cam_dct['rotate'] = ( 20, 180, 20 )
    pin.shadow = True
    pin.light_lst = [( 0, 0, -5 ), ( 0, -5, 0 ), ( -5, 0, 0 ),
                     ( 0, 0, 5 ), ( 0, 5, 0 ), ( 5, 0, 0 ),
                     ( -5, -5, -5 ), ( 5, -5, 5 ), ( -5, -5, 5 ), ( 5, -5, -5 ) ]
    pin.axes_dct['show'] = False
    pin.axes_dct['len'] = 1.2
    pin.height = 400
    pin.width = 800
    pin.quality = 11
    pin.ani_delay = 10
    pin.impl = None

    start0 = sage_QQ( 1 ) / 10  # step0=10 step1=15
    v0_lst = [ start0 + ( sage_QQ( i ) / 180 ) * sage_pi for i in range( 0, 360, 10 )]
    v1_lst = [ ( sage_QQ( i ) / 180 ) * sage_pi for i in range( 0, 360, 15 )]
    v1_lst_F = [ start0 + ( sage_QQ( i ) / 360 ) * sage_pi for i in range( 0, 720, 1 )]

    v1_lst_WE = [1.8, 2.3, 2.7, 3.1, 3.5, 3.8, 4.134, 4.31, 4.532, 4.7, 4.9, 5.08, 5.25, 5.405, 5.553, 5.7, 5.84]
    v1_lst_WF = [1.69, 1.87, 2.07, 2.26, 2.5, 2.72, 2.96, 3.2, 3.42, 3.65, 3.81]
    v1_lst_WD = [ 5.44, 5.56, 5.68, 5.81, 5.95, 6.1, 6.27, 6.474]  # [5.01, 5.12, 5.22, 5.32,

    v1_lst_SA = [6.5]; v1_lst_SE = [5.4];
    v1_lst_SB = [5.95]; v1_lst_SF = [2.28];
    v1_lst_SC = [4.83]; v1_lst_SD = [5.55];

    pin.pmz_dct['A'] = ( pmz_AB_lst, 0 )
    pin.pmz_dct['B'] = ( pmz_AB_lst, 1 )
    pin.pmz_dct['C'] = ( pmz_CB_lst, 0 )
    pin.pmz_dct['D'] = ( pmz_DB_lst, 0 )
    pin.pmz_dct['E'] = ( pmz_EB_lst, 0 )
    pin.pmz_dct['F'] = ( pmz_AF_lst, 1 )
    pin.pmz_dct['WD'] = ( pmz_DB_lst, 0 )
    pin.pmz_dct['WE'] = ( pmz_EB_lst, 0 )
    pin.pmz_dct['WF'] = ( pmz_AF_lst, 1 )
    pin.pmz_dct['SA'] = ( pmz_AB_lst, 0 )
    pin.pmz_dct['SB'] = ( pmz_AB_lst, 1 )
    pin.pmz_dct['SC'] = ( pmz_CB_lst, 0 )
    pin.pmz_dct['SD'] = ( pmz_DB_lst, 0 )
    pin.pmz_dct['SE'] = ( pmz_EB_lst, 0 )
    pin.pmz_dct['SF'] = ( pmz_AF_lst, 1 )
    pin.pmz_dct['FA'] = ( pmz_AB_lst, 0 )
    pin.pmz_dct['FB'] = ( pmz_AB_lst, 1 )
    pin.pmz_dct['FC'] = ( pmz_CB_lst, 0 )
    pin.pmz_dct['FD'] = ( pmz_DB_lst, 0 )
    pin.pmz_dct['FE'] = ( pmz_EB_lst, 0 )
    pin.pmz_dct['FF'] = ( pmz_AF_lst, 1 )

    pin.curve_dct['A'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05}
    pin.curve_dct['B'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05}
    pin.curve_dct['C'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05}
    pin.curve_dct['D'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05}
    pin.curve_dct['E'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05}
    pin.curve_dct['F'] = {'step0':v0_lst, 'step1':v1_lst, 'prec':10, 'width':0.05}

    pin.curve_dct['WD'] = {'step0':v0_lst, 'step1':v1_lst_WD, 'prec':10, 'width':0.05}
    pin.curve_dct['WE'] = {'step0':v0_lst, 'step1':v1_lst_WE, 'prec':10, 'width':0.05}
    pin.curve_dct['WF'] = {'step0':v0_lst, 'step1':v1_lst_WF, 'prec':10, 'width':0.05}

    pin.curve_dct['SA'] = {'step0':v0_lst, 'step1':v1_lst_SA, 'prec':10, 'width':0.05}
    pin.curve_dct['SB'] = {'step0':v0_lst, 'step1':v1_lst_SB, 'prec':10, 'width':0.05}
    pin.curve_dct['SC'] = {'step0':v0_lst, 'step1':v1_lst_SC, 'prec':10, 'width':0.05}
    pin.curve_dct['SD'] = {'step0':v0_lst, 'step1':v1_lst_SD, 'prec':10, 'width':0.06}
    pin.curve_dct['SE'] = {'step0':v0_lst, 'step1':v1_lst_SE, 'prec':10, 'width':0.05}
    pin.curve_dct['SF'] = {'step0':v0_lst, 'step1':v1_lst_SF, 'prec':10, 'width':0.05}

    pin.curve_dct['FA'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01}
    pin.curve_dct['FB'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01}
    pin.curve_dct['FC'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01}
    pin.curve_dct['FD'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01}
    pin.curve_dct['FE'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01}
    pin.curve_dct['FF'] = {'step0':v0_lst, 'step1':v1_lst_F, 'prec':10, 'width':0.01}

    col_A = rgbt2pov( ( 28, 125, 154, 0 ) )  # blue
    col_B = rgbt2pov( ( 74, 33, 0, 0 ) )  # brown
    col_C = rgbt2pov( ( 75, 102, 0, 0 ) )  # green
    col_E = col_A
    col_F = col_B
    col_D = col_C
    colFF = rgbt2pov( ( 179, 200, 217, 0 ) )  # light blue

    pin.text_dct['A'] = [True, col_A, 'phong 0.2' ]
    pin.text_dct['B'] = [True, col_B, 'phong 0.2' ]
    pin.text_dct['C'] = [True, col_C, 'phong 0.2' ]
    pin.text_dct['E'] = [True, col_E, 'phong 0.2' ]
    pin.text_dct['F'] = [True, col_F, 'phong 0.2' ]
    pin.text_dct['D'] = [True, col_D, 'phong 0.2' ]
    pin.text_dct['WE'] = [True, col_E, 'phong 0.2' ]
    pin.text_dct['WF'] = [True, col_F, 'phong 0.2' ]
    pin.text_dct['WD'] = [True, col_D, 'phong 0.2' ]
    pin.text_dct['SA'] = [True, col_A, 'phong 0.2' ]
    pin.text_dct['SB'] = [True, col_B, 'phong 0.2' ]
    pin.text_dct['SC'] = [True, col_C, 'phong 0.2' ]
    pin.text_dct['SE'] = [True, col_E, 'phong 0.2' ]
    pin.text_dct['SF'] = [True, col_F, 'phong 0.2' ]
    pin.text_dct['SD'] = [True, col_D, 'phong 0.2' ]
    pin.text_dct['FA'] = [True, colFF, 'phong 0.2' ]
    pin.text_dct['FB'] = [True, colFF, 'phong 0.2' ]
    pin.text_dct['FC'] = [True, colFF, 'phong 0.2' ]
    pin.text_dct['FE'] = [True, colFF, 'phong 0.2' ]
    pin.text_dct['FF'] = [True, colFF, 'phong 0.2' ]
    pin.text_dct['FD'] = [True, colFF, 'phong 0.2' ]

    # raytrace image/animation
    F_lst = ['FA', 'FB', 'FC']
    S_lst = ['SA', 'SB', 'SC', 'SD', 'SE', 'SF']
    create_pov( pin, ['A', 'B', 'C'] )
    create_pov( pin, ['A', 'B', 'C'] + F_lst )
    create_pov( pin, ['WD', 'WE', 'WF'] )
    create_pov( pin, ['WD', 'WE', 'WF'] + F_lst )
    create_pov( pin, S_lst + F_lst )

    # ABC - EFD
    create_pov( pin, ['A', 'B'] + F_lst )
    create_pov( pin, ['E', 'F'] + F_lst )
示例#9
0
def usecase_celestial_types():
    '''
    Let surface X in P^m be the blowups of P^1xP^1 in either 0 or 2 complex conjugate  
    points so that m=8 and m=6 respectively. 
    Here P^1xP^1 denotes the fiber product of the projective line with itself. 
    We verify for n in [3,4,5,6,7] whether X can be linearly projected into the 
    projective n-sphere S^n.  
    
    If m=8, then the celestial type is (2,8,n), where the first entry denotes 
    the number of conics contained in X through (almost) every point.
    
    If m=6, then the celestial type is (3,6,n) or (2,6,n). If X in S^5 has celestial type
    (2,6,5), then X has a real isolated singularity (see dp6_sing() for a visualization)).  
    '''

    # We provide certificates "c_lst" and "prv_Q" for "get_surf()",
    # which were obtained by a previous (long) computation.

    #
    # P^1xP^1
    #
    # We construct a parametrization of the double Segre surface dP8 in
    # projective 8-space. This surface contains 2 conics through each point
    #
    ring = PolyRing('x,y,v,w', True)
    ls_dP8 = LinearSeries(get_mon_lst([2, 2], ring.gens()), ring)
    OrbTools.p('ls_dP8 =', ls_dP8)

    get_surf(ls_dP8, (7 + 1, 1), [
        -8, -8, -10, -6, -7, 6, 5, 6, 0, -8, -2, -7, -7, 7, -1, 0, -9, 7, 1, -9
    ])

    prv_Q = sage_matrix([(0, 0, 0, 1, 1, 1, 0, 0, 0),
                         (0, 1, 0, 0, 0, 0, 0, 0, 0),
                         (1, 0, 1, 1, 0, 0, 0, 1, 0),
                         (1, 0, 0, 1, 0, 0, 1, 0, 0),
                         (0, 0, 0, 0, 0, 0, 1, 0, 1),
                         (0, 1, 0, 0, 1, 0, 1, 0, 1),
                         (0, 0, 0, 1, 1, 0, 1, 0, 1),
                         (1, 0, 0, 1, 0, 0, 1, 1, 0)])
    get_surf(
        ls_dP8, (6 + 1, 1),
        [3, -3, 3, -7, 7, 1, -4, 3, -10, 6, -4, -6, -6, 4, -9, 3, -6, -4, 1],
        prv_Q)

    prv_Q = sage_matrix([(0, 1, 0, 0, 1, 0, 1, 0, 1),
                         (1, 1, 1, 1, 0, 1, 0, 0, 1),
                         (1, 1, 0, 1, 1, 1, 1, 0, 1),
                         (1, 1, 1, 1, 1, 1, 1, 1, 1),
                         (1, 0, 1, 0, 1, 0, 1, 0, 0),
                         (0, 0, 1, 0, 1, 0, 0, 1, 0),
                         (0, 0, 0, 0, 0, 0, 1, 1, 1)])
    get_surf(ls_dP8, (5 + 1, 1), [
        -7, -2, -1, -5, -4, 6, -2, -2, -2, 2, 9, -4, -9, -4, 2, -10, 9, -6, -1
    ], prv_Q)

    prv_Q = sage_matrix([(0, 1, 0, 1, 1, 1, 0, 1, 1),
                         (1, 0, 0, 0, 1, 1, 0, 1, 1),
                         (1, 0, 0, 0, 1, 0, 0, 0, 1),
                         (0, 1, 1, 0, 0, 0, 1, 1, 0),
                         (1, 1, 1, 0, 0, 0, 1, 1, 0),
                         (0, 1, 1, 1, 0, 1, 1, 1, 0)])
    get_surf(ls_dP8, (4 + 1, 1),
             [-2, -3, 6, 7, -10, -2, -4, -8, -3, -4, 4, -6], prv_Q)

    #
    # P^1xP^1 blown up in two general complex conjugate points
    #
    # We construct a parametrization of a sextic del Pezzo surface dP6
    # in projective 6-space, that contains 3 conics through each point.
    # We show that dP6 can be projected into S^5 and S^4.
    #
    a0 = PolyRing('x,y,v,w', True).ext_num_field('t^2 + 1').root_gens()[0]
    bp_tree = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bp_tree.add('xv', (-a0, a0), 1)
    bp_tree.add('xv', (a0, -a0), 1)
    ls_dP6 = LinearSeries.get([2, 2], bp_tree)
    OrbTools.p('ls_dP6 =', ls_dP6)
    get_surf(ls_dP6, (5 + 1, 1), [-9, -6, 1, 4, -1, -8, -5, -5, -4, 8, 1])
    prv_Q = sage_matrix([(0, 0, 0, 1, 0, 1, 1), (1, 1, 0, 1, 0, 0, 0),
                         (0, 1, 1, 0, 1, 0, 1), (1, 1, 0, 0, 1, 0, 0),
                         (1, 1, 1, 1, 1, 1, 0), (1, 0, 0, 1, 0, 1, 1)])
    get_surf(ls_dP6, (4 + 1, 1), [-1, -9, -10, -7, -10, -8, 0], prv_Q)

    #
    # P^1xP^1 blown up in two complex conjugate points that lie in the same fiber
    #
    # We construct a parametrization of a sextic weak del Pezzo surface wdP6
    # in projective 6-space, that contains 2 conics through each point.
    # We show that wdP6 can be projected into S^5 and S^4.
    #
    a0 = PolyRing('x,y,v,w', True).ext_num_field('t^2 + 1').root_gens()[0]
    bp_tree = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bp_tree.add('xv', (a0, 0),
                1)  # the complex conjugate base points lie in the same fiber
    bp_tree.add('xv', (-a0, 0), 1)
    ls_wdP6 = LinearSeries.get([2, 2], bp_tree)
    OrbTools.p('ls_wdP6 =', ls_wdP6)
    get_surf(ls_wdP6, (5 + 1, 1), [-6, 8, -7, -8, 0, -8, 2, -5, -8])
    prv_Q = sage_matrix([(1, 0, 0, 1, 1, 1, 0), (1, 0, 0, 1, 0, 1, 1),
                         (0, 1, 1, 1, 0, 1, 0), (0, 0, 0, 0, 1, 0, 0),
                         (0, 1, 0, 1, 1, 1, 0), (0, 0, 0, 1, 1, 1, 0)])
    get_surf(ls_wdP6, (4 + 1, 1), [-2, -7, -6, -10, -2, -4, 4], prv_Q)
示例#10
0
def ring_cyclide():
    '''
    Creates povray image of 4 families of circles on a ring cyclide. 
    '''

    # We construct a trigonometric parametrization of the ring cyclide,
    # by rotating a circle of radius r along a circle of radius R.
    R = 2
    r = 1
    x, y, v, w, c0, s0, c1, s1 = sage_var('x,y,v,w,c0,s0,c1,s1')
    V = sage_vector([r * c0 + R, 0, r * s0])
    M = sage_matrix([(c1, -s1, 0), (s1, c1, 0), (0, 0, 1)])
    pmz_AB_lst = [1] + list(M * V)
    OrbTools.p('pmz_AB_lst =', pmz_AB_lst)
    for pmz in pmz_AB_lst:
        OrbTools.p('\t\t', sage_factor(pmz))

    # convert pmz_AB_lst to rational parametrization pmz_lst
    C0 = (y**2 - x**2) / (y**2 + x**2)
    S0 = 2 * x * y / (y**2 + x**2)
    C1 = (w**2 - v**2) / (w**2 + v**2)
    S1 = 2 * v * w / (w**2 + v**2)
    den = (y**2 + x**2) * (w**2 + v**2)
    dct = {c0: C0, s0: S0, c1: C1, s1: S1}
    pmz_lst = [den] + [(elt.subs(dct) * den).simplify_full()
                       for elt in list(M * V)]
    OrbTools.p('pmz_lst =', pmz_lst)

    # find basepoints
    ls = LinearSeries(pmz_lst, PolyRing('x,y,v,w', True))
    OrbTools.p(ls.get_bp_tree())

    # construct linear series for families of conics
    a0, a1 = PolyRing('x,y,v,w').ext_num_field('t^2+1/3').ext_num_field(
        't^2+1').root_gens()

    p1 = ['xv', (-a0, a1)]
    p2 = ['xv', (a0, -a1)]
    p3 = ['xv', (-a0, -a1)]
    p4 = ['xv', (a0, a1)]

    bpt_1234 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_1234.add(p1[0], p1[1], 1)
    bpt_1234.add(p2[0], p2[1], 1)
    bpt_1234.add(p3[0], p3[1], 1)
    bpt_1234.add(p4[0], p4[1], 1)

    bpt_12 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_12.add(p1[0], p1[1], 1)
    bpt_12.add(p2[0], p2[1], 1)

    bpt_34 = BasePointTree(['xv', 'xw', 'yv', 'yw'])
    bpt_34.add(p3[0], p3[1], 1)
    bpt_34.add(p4[0], p4[1], 1)

    ls_22 = LinearSeries.get([2, 2], bpt_1234)  # |2(l1+l2)-e1-e2-e3-e4|
    ls_21 = LinearSeries.get([2, 1], bpt_1234)
    ls_12 = LinearSeries.get([1, 2], bpt_1234)
    ls_11a = LinearSeries.get([1, 1], bpt_12)
    ls_11b = LinearSeries.get([1, 1], bpt_34)

    OrbTools.p('linear series 22 =\n', ls_22)
    OrbTools.p('linear series 21 =\n', ls_21)
    OrbTools.p('linear series 12 =\n', ls_12)
    OrbTools.p('linear series 11a =\n', ls_11a)
    OrbTools.p('linear series 11b =\n', ls_11b)

    # compute reparametrization
    ring = PolyRing(
        'x,y,v,w,c0,s0,c1,s1')  # construct polynomial ring with new generators
    pmz_lst = ring.coerce(pmz_lst)
    x, y, v, w, c0, s0, c1, s1 = ring.gens()
    X = 1 - s0
    Y = c0
    # see get_S1xS1_pmz()
    V = 1 - s1
    W = c1
    q = sage_n(sage_sqrt(3)).exact_rational()  # approximation of sqrt(3)
    CB_dct = {x: X, y: Y, v: W * X + q * V * Y, w: V * X - q * W * Y}
    DB_dct = {x: X, y: Y, v: W * X - q * V * Y, w: V * X + q * W * Y}
    pmz_CB_lst = [pmz.subs(CB_dct) for pmz in pmz_lst]
    pmz_DB_lst = [pmz.subs(DB_dct) for pmz in pmz_lst]

    # output
    OrbTools.p('pmz_AB_lst =\n', pmz_AB_lst)
    OrbTools.p('pmz_CB_lst =\n', pmz_CB_lst)
    OrbTools.p('pmz_DB_lst =\n', pmz_DB_lst)

    # mathematica
    for pmz, AB in [(pmz_AB_lst, 'AB'), (pmz_CB_lst, 'CB'),
                    (pmz_DB_lst, 'DB')]:
        s = 'pmz' + AB + '=' + str(pmz) + ';'
        s = s.replace('[', '{').replace(']', '}')
        print(s)

    # PovInput ring cyclide
    #
    pin = PovInput()

    pin.path = './' + get_time_str() + '_ring_cyclide/'
    pin.fname = 'orb'
    pin.scale = 1
    pin.cam_dct['location'] = (0, -7, 0)
    pin.cam_dct['lookat'] = (0, 0, 0)
    pin.cam_dct['rotate'] = (55, 0, 0)  # 45
    pin.shadow = True
    pin.light_lst = [(0, 0, -5), (0, -5, 0), (-5, 0, 0), (0, 0, 5), (0, 5, 0),
                     (5, 0, 0), (-5, -5, -5), (5, -5, 5), (-5, -5, 5),
                     (5, -5, -5)]
    pin.axes_dct['show'] = False
    pin.axes_dct['len'] = 1.2
    pin.width = 800
    pin.height = 400
    pin.quality = 11
    pin.ani_delay = 10

    pin.impl = None

    pin.pmz_dct['A'] = (pmz_AB_lst, 0)
    pin.pmz_dct['B'] = (pmz_AB_lst, 1)
    pin.pmz_dct['C'] = (pmz_CB_lst, 0)
    pin.pmz_dct['D'] = (pmz_DB_lst, 0)
    pin.pmz_dct['FA'] = (pmz_AB_lst, 0)
    pin.pmz_dct['FB'] = (pmz_AB_lst, 1)
    pin.pmz_dct['FC'] = (pmz_CB_lst, 0)
    pin.pmz_dct['FD'] = (pmz_DB_lst, 0)
    pin.pmz_dct['WA'] = (pmz_AB_lst, 0)
    pin.pmz_dct['WB'] = (pmz_AB_lst, 1)
    pin.pmz_dct['WC'] = (pmz_CB_lst, 0)
    pin.pmz_dct['WD'] = (pmz_DB_lst, 0)

    v0_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 10)]
    v1_lst = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 24)]

    v1_lst_A = [
        sage_pi / 2 + (sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 12)
    ]
    v1_lstFF = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 1)]

    v1_lst_WA = [
        0.1, 0.52, 0.94, 1.36, 1.78, 2.2, 2.61, 3.04, 3.45, 3.88, 4.3, 4.712,
        5.13, 5.55, 5.965
    ]
    v1_lst_WB = [
        0, 0.7, 1.31, 1.8, 2.18, 2.5, 2.77, 3.015, 3.26, 3.51, 3.78, 4.099,
        4.49, 4.97, 5.579
    ]
    v1_lst_WD = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 24)]
    v1_lst_WC = [(sage_QQ(i) / 180) * sage_pi for i in range(0, 360, 24)]

    pin.curve_dct['A'] = {
        'step0': v0_lst,
        'step1': v1_lst_A,
        'prec': 10,
        'width': 0.05
    }
    pin.curve_dct['B'] = {
        'step0': v0_lst,
        'step1': v1_lst,
        'prec': 10,
        'width': 0.05
    }
    pin.curve_dct['C'] = {
        'step0': v0_lst,
        'step1': v1_lst,
        'prec': 10,
        'width': 0.05
    }
    pin.curve_dct['D'] = {
        'step0': v0_lst,
        'step1': v1_lst,
        'prec': 10,
        'width': 0.05
    }
    pin.curve_dct['FA'] = {
        'step0': v0_lst,
        'step1': v1_lstFF,
        'prec': 10,
        'width': 0.02
    }
    pin.curve_dct['FB'] = {
        'step0': v0_lst,
        'step1': v1_lstFF,
        'prec': 10,
        'width': 0.02
    }
    pin.curve_dct['FC'] = {
        'step0': v0_lst,
        'step1': v1_lstFF,
        'prec': 10,
        'width': 0.02
    }
    pin.curve_dct['FD'] = {
        'step0': v0_lst,
        'step1': v1_lstFF,
        'prec': 10,
        'width': 0.02
    }
    pin.curve_dct['WA'] = {
        'step0': v0_lst,
        'step1': v1_lst_WA,
        'prec': 10,
        'width': 0.05
    }
    pin.curve_dct['WB'] = {
        'step0': v0_lst,
        'step1': v1_lst_WB,
        'prec': 10,
        'width': 0.05
    }
    pin.curve_dct['WC'] = {
        'step0': v0_lst,
        'step1': v1_lst_WC,
        'prec': 10,
        'width': 0.05
    }
    pin.curve_dct['WD'] = {
        'step0': v0_lst,
        'step1': v1_lst_WD,
        'prec': 10,
        'width': 0.05
    }

    # A = | rotated circle
    # B = - horizontal circle
    # C = / villarceau circle
    # D = \ villarceau circle
    col_A = rgbt2pov((28, 125, 154, 0))  # blue
    col_B = rgbt2pov((74, 33, 0, 0))  # brown
    col_C = rgbt2pov((75, 102, 0, 0))  # green
    col_D = rgbt2pov((187, 46, 0, 0))  # red/orange
    colFF = rgbt2pov((179, 200, 217, 0))  # light blue

    pin.text_dct['A'] = [True, col_A, 'phong 0.2 phong_size 5']
    pin.text_dct['B'] = [True, col_B, 'phong 0.2 phong_size 5']
    pin.text_dct['C'] = [True, col_C, 'phong 0.2 phong_size 5']
    pin.text_dct['D'] = [True, col_D, 'phong 0.2 phong_size 5']
    pin.text_dct['FA'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FB'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FC'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['FD'] = [True, colFF, 'phong 0.2 phong_size 5']
    pin.text_dct['WA'] = [True, col_A, 'phong 0.2 phong_size 5']
    pin.text_dct['WB'] = [True, col_B, 'phong 0.2 phong_size 5']
    pin.text_dct['WC'] = [True, col_C, 'phong 0.2 phong_size 5']
    pin.text_dct['WD'] = [True, col_D, 'phong 0.2 phong_size 5']

    # raytrace image/animation
    create_pov(pin, ['A', 'C', 'D'])
    create_pov(pin, ['A', 'C', 'D'] + ['FA', 'FC', 'FD'])

    create_pov(pin, ['WA', 'WB', 'WC', 'WD'])
    create_pov(pin, ['WA', 'WB', 'WC', 'WD'] + ['FA', 'FC', 'FD'])

    create_pov(pin, ['WA', 'WB', 'WD'])
    create_pov(pin, ['WA', 'WB', 'WD'] + ['FA', 'FC', 'FD'])