def summary(self) -> Summary: """ Model estimation summary. Returns ------- Summary Summary table of model estimation results Supports export to csv, html and latex using the methods ``summary.as_csv()``, ``summary.as_html()`` and ``summary.as_latex()``. """ title = self.name + " Estimation Summary" top_left = [ ("No. Test Portfolios:", len(self._portfolio_names)), ("No. Factors:", len(self._factor_names)), ("No. Observations:", self.nobs), ("Date:", self._datetime.strftime("%a, %b %d %Y")), ("Time:", self._datetime.strftime("%H:%M:%S")), ("Cov. Estimator:", self._cov_type), ("", ""), ] j_stat = _str(self.j_statistic.stat) j_pval = pval_format(self.j_statistic.pval) j_dist = self.j_statistic.dist_name top_right = [ ("R-squared:", _str(self.rsquared)), ("J-statistic:", j_stat), ("P-value", j_pval), ("Distribution:", j_dist), ("", ""), ("", ""), ("", ""), ] stubs = [] vals = [] for stub, val in top_left: stubs.append(stub) vals.append([val]) table = SimpleTable(vals, txt_fmt=fmt_2cols, title=title, stubs=stubs) # create summary table instance smry = Summary() # Top Table # Parameter table fmt = fmt_2cols fmt["data_fmts"][1] = "%18s" top_right = [("%-21s" % (" " + k), v) for k, v in top_right] stubs = [] vals = [] for stub, val in top_right: stubs.append(stub) vals.append([val]) table.extend_right(SimpleTable(vals, stubs=stubs)) smry.tables.append(table) rp = np.asarray(self.risk_premia)[:, None] se = np.asarray(self.risk_premia_se)[:, None] tstats = np.asarray(self.risk_premia / self.risk_premia_se) pvalues = 2 - 2 * stats.norm.cdf(np.abs(tstats)) ci = rp + se * stats.norm.ppf([[0.025, 0.975]]) param_data = np.c_[rp, se, tstats[:, None], pvalues[:, None], ci] data = [] for row in param_data: txt_row = [] for i, v in enumerate(row): f = _str if i == 3: f = pval_format txt_row.append(f(v)) data.append(txt_row) title = "Risk Premia Estimates" table_stubs = list(self.risk_premia.index) header = [ "Parameter", "Std. Err.", "T-stat", "P-value", "Lower CI", "Upper CI" ] table = SimpleTable(data, stubs=table_stubs, txt_fmt=fmt_params, headers=header, title=title) smry.tables.append(table) smry.add_extra_txt([ "Covariance estimator:", str(self._cov_est), "See full_summary for complete results", ]) return smry
def summary(self) -> Summary: """ Model estimation summary. Returns ------- Summary Summary table of model estimation results Supports export to csv, html and latex using the methods ``summary.as_csv()``, ``summary.as_html()`` and ``summary.as_latex()``. """ title = "System " + self._method + " Estimation Summary" top_left = [ ("Estimator:", self._method), ("No. Equations.:", str(len(self.equation_labels))), ("No. Observations:", str(self.resids.shape[0])), ("Date:", self._datetime.strftime("%a, %b %d %Y")), ("Time:", self._datetime.strftime("%H:%M:%S")), ("", ""), ("", ""), ] top_right = [ ("Overall R-squared:", _str(self.rsquared)), ("McElroy's R-squared:", _str(self.system_rsquared.mcelroy)), ("Judge's (OLS) R-squared:", _str(self.system_rsquared.judge)), ("Berndt's R-squared:", _str(self.system_rsquared.berndt)), ("Dhrymes's R-squared:", _str(self.system_rsquared.dhrymes)), ("Cov. Estimator:", self._cov_type), ("Num. Constraints: ", self._num_constraints), ] stubs = [] vals = [] for stub, val in top_left: stubs.append(stub) vals.append([val]) table = SimpleTable(vals, txt_fmt=fmt_2cols, title=title, stubs=stubs) # create summary table instance smry = Summary() # Top Table # Parameter table fmt = fmt_2cols fmt["data_fmts"][1] = "%10s" top_right = [("%-21s" % (" " + k), v) for k, v in top_right] stubs = [] vals = [] for stub, val in top_right: stubs.append(stub) vals.append([val]) table.extend_right(SimpleTable(vals, stubs=stubs)) smry.tables.append(table) for i, eqlabel in enumerate(self.equation_labels): last_row = i == (len(self.equation_labels) - 1) results = self.equations[eqlabel] dep_name = results.dependent title = "Equation: {0}, Dependent Variable: {1}".format( eqlabel, dep_name) pad_bottom = results.instruments is not None and not last_row smry.tables.append( param_table(results, title, pad_bottom=pad_bottom)) if results.instruments: formatted = format_wide(results.instruments, 80) if not last_row: formatted.append([" "]) smry.tables.append( SimpleTable(formatted, headers=["Instruments"])) extra_text = ["Covariance Estimator:"] for line in str(self._cov_estimator).split("\n"): extra_text.append(line) if self._weight_estimtor: extra_text.append("Weight Estimator:") for line in str(self._weight_estimtor).split("\n"): extra_text.append(line) smry.add_extra_txt(extra_text) return smry
def summary(self): """Summary table of model comparison""" smry = Summary() models = list(self._results.keys()) title = 'Model Comparison' stubs = [ 'Dep. Variable', 'Estimator', 'No. Observations', 'Cov. Est.', 'R-squared', 'Adj. R-squared', 'F-statistic', 'P-value (F-stat)' ] dep_name = OrderedDict() for key in self._results: dep_name[key] = self._results[key].model.dependent.cols[0] dep_name = Series(dep_name) vals = concat([ dep_name, self.estimator_method, self.nobs, self.cov_estimator, self.rsquared, self.rsquared_adj, self.f_statistic ], 1) vals = [[i for i in v] for v in vals.T.values] vals[2] = [str(v) for v in vals[2]] for i in range(4, len(vals)): vals[i] = [_str(v) for v in vals[i]] params = self.params tstats = self.tstats params_fmt = [] params_stub = [] for i in range(len(params)): params_fmt.append([_str(v) for v in params.values[i]]) tstats_fmt = [] for v in tstats.values[i]: v_str = _str(v) v_str = '({0})'.format(v_str) if v_str.strip() else v_str tstats_fmt.append(v_str) params_fmt.append(tstats_fmt) params_stub.append(params.index[i]) params_stub.append(' ') vals = table_concat((vals, params_fmt)) stubs = stub_concat((stubs, params_stub)) all_instr = [] for key in self._results: res = self._results[key] all_instr.append(res.model.instruments.cols) ninstr = max(map(lambda l: len(l), all_instr)) instruments = [] instrument_stub = ['Instruments'] for i in range(ninstr): if i > 0: instrument_stub.append('') row = [] for j in range(len(self._results)): instr = all_instr[j] if len(instr) > i: row.append(instr[i]) else: row.append('') instruments.append(row) if instruments: vals = table_concat((vals, instruments)) stubs = stub_concat((stubs, instrument_stub)) txt_fmt = default_txt_fmt.copy() txt_fmt['data_aligns'] = 'r' txt_fmt['header_align'] = 'r' table = SimpleTable(vals, headers=models, title=title, stubs=stubs, txt_fmt=txt_fmt) smry.tables.append(table) smry.add_extra_txt(['T-stats reported in parentheses']) return smry
def summary(self): """Summary table of model estimation results""" title = self._method + ' Estimation Summary' mod = self.model top_left = [('Dep. Variable:', mod.dependent.cols[0]), ('Estimator:', self._method), ('No. Observations:', self.nobs), ('Date:', self._datetime.strftime('%a, %b %d %Y')), ('Time:', self._datetime.strftime('%H:%M:%S')), ('Cov. Estimator:', self._cov_type), ('', '')] top_right = [('R-squared:', _str(self.rsquared)), ('Adj. R-squared:', _str(self.rsquared_adj)), ('F-statistic:', _str(self.f_statistic.stat)), ('P-value (F-stat)', pval_format(self.f_statistic.pval)), ('Distribution:', str(self.f_statistic.dist_name)), ('', ''), ('', '')] stubs = [] vals = [] for stub, val in top_left: stubs.append(stub) vals.append([val]) table = SimpleTable(vals, txt_fmt=fmt_2cols, title=title, stubs=stubs) # create summary table instance smry = Summary() # Top Table # Parameter table fmt = fmt_2cols fmt['data_fmts'][1] = '%18s' top_right = [('%-21s' % (' ' + k), v) for k, v in top_right] stubs = [] vals = [] for stub, val in top_right: stubs.append(stub) vals.append([val]) table.extend_right(SimpleTable(vals, stubs=stubs)) smry.tables.append(table) param_data = c_[self.params.values[:, None], self.std_errors.values[:, None], self.tstats.values[:, None], self.pvalues.values[:, None], self.conf_int()] data = [] for row in param_data: txt_row = [] for i, v in enumerate(row): f = _str if i == 3: f = pval_format txt_row.append(f(v)) data.append(txt_row) title = 'Parameter Estimates' table_stubs = list(self.params.index) header = [ 'Parameter', 'Std. Err.', 'T-stat', 'P-value', 'Lower CI', 'Upper CI' ] table = SimpleTable(data, stubs=table_stubs, txt_fmt=fmt_params, headers=header, title=title) smry.tables.append(table) instruments = self.model.instruments if instruments.shape[1] > 0: extra_text = [] endog = self.model.endog extra_text.append('Endogenous: ' + ', '.join(endog.cols)) extra_text.append('Instruments: ' + ', '.join(instruments.cols)) cov_descr = str(self._cov_estimator) for line in cov_descr.split('\n'): extra_text.append(line) smry.add_extra_txt(extra_text) return smry
def summary(self): """Summary table of model comparison""" smry = Summary() models = list(self._results.keys()) title = 'Model Comparison' stubs = [ 'Dep. Variable', 'Estimator', 'No. Observations', 'Cov. Est.', 'R-squared', 'R-Squared (Within)', 'R-Squared (Between)', 'R-Squared (Overall)', 'F-statistic', 'P-value (F-stat)' ] dep_name = {} for key in self._results: dep_name[key] = self._results[key].model.dependent.vars[0] dep_name = Series(dep_name) vals = concat([ dep_name, self.estimator_method, self.nobs, self.cov_estimator, self.rsquared, self.rsquared_within, self.rsquared_between, self.rsquared_overall, self.f_statistic ], 1) vals = [[i for i in v] for v in vals.T.values] vals[2] = [str(v) for v in vals[2]] for i in range(4, len(vals)): f = _str if i == 9: f = pval_format vals[i] = [f(v) for v in vals[i]] params = self.params tstats = self.tstats params_fmt = [] params_stub = [] for i in range(len(params)): params_fmt.append([_str(v) for v in params.values[i]]) tstats_fmt = [] for v in tstats.values[i]: v_str = _str(v) v_str = '({0})'.format(v_str) if v_str.strip() else v_str tstats_fmt.append(v_str) params_fmt.append(tstats_fmt) params_stub.append(params.index[i]) params_stub.append(' ') vals = table_concat((vals, params_fmt)) stubs = stub_concat((stubs, params_stub)) all_effects = [] for key in self._results: res = self._results[key] effects = getattr(res, 'included_effects', []) all_effects.append(effects) neffect = max(map(lambda l: len(l), all_effects)) effects = [] effects_stub = ['Effects'] for i in range(neffect): if i > 0: effects_stub.append('') row = [] for j in range(len(self._results)): effect = all_effects[j] if len(effect) > i: row.append(effect[i]) else: row.append('') effects.append(row) if effects: vals = table_concat((vals, effects)) stubs = stub_concat((stubs, effects_stub)) txt_fmt = default_txt_fmt.copy() txt_fmt['data_aligns'] = 'r' txt_fmt['header_align'] = 'r' table = SimpleTable(vals, headers=models, title=title, stubs=stubs, txt_fmt=txt_fmt) smry.tables.append(table) smry.add_extra_txt(['T-stats reported in parentheses']) return smry
def summary(self): """:obj:`statsmodels.iolib.summary.Summary` : Summary table of model estimation results Supports export to csv, html and latex using the methods ``summary.as_csv()``, ``summary.as_html()`` and ``summary.as_latex()``. """ smry = Summary() models = list(self._results.keys()) title = 'Model Comparison' stubs = [ 'Dep. Variable', 'Estimator', 'No. Observations', 'Cov. Est.', 'R-squared', 'R-Squared (Within)', 'R-Squared (Between)', 'R-Squared (Overall)', 'F-statistic', 'P-value (F-stat)' ] dep_name = {} for key in self._results: dep_name[key] = self._results[key].model.dependent.vars[0] dep_name = Series(dep_name) vals = concat([ dep_name, self.estimator_method, self.nobs, self.cov_estimator, self.rsquared, self.rsquared_within, self.rsquared_between, self.rsquared_overall, self.f_statistic ], 1) vals = [[i for i in v] for v in vals.T.values] vals[2] = [str(v) for v in vals[2]] for i in range(4, len(vals)): f = _str if i == 9: f = pval_format vals[i] = [f(v) for v in vals[i]] params = self.params precision = getattr(self, self._precision) params_fmt = [] params_stub = [] for i in range(len(params)): params_fmt.append([_str(v) for v in params.values[i]]) precision_fmt = [] for v in precision.values[i]: v_str = _str(v) v_str = '({0})'.format(v_str) if v_str.strip() else v_str precision_fmt.append(v_str) params_fmt.append(precision_fmt) params_stub.append(params.index[i]) params_stub.append(' ') vals = table_concat((vals, params_fmt)) stubs = stub_concat((stubs, params_stub)) all_effects = [] for key in self._results: res = self._results[key] effects = getattr(res, 'included_effects', []) all_effects.append(effects) neffect = max(map(len, all_effects)) effects = [] effects_stub = ['Effects'] for i in range(neffect): if i > 0: effects_stub.append('') row = [] for j in range(len(self._results)): effect = all_effects[j] if len(effect) > i: row.append(effect[i]) else: row.append('') effects.append(row) if effects: vals = table_concat((vals, effects)) stubs = stub_concat((stubs, effects_stub)) txt_fmt = default_txt_fmt.copy() txt_fmt['data_aligns'] = 'r' txt_fmt['header_align'] = 'r' table = SimpleTable(vals, headers=models, title=title, stubs=stubs, txt_fmt=txt_fmt) smry.tables.append(table) prec_type = self._PRECISION_TYPES[self._precision] smry.add_extra_txt(['{0} reported in parentheses'.format(prec_type)]) return smry
def summary(self) -> Summary: """ Model estimation summary. Returns ------- Summary Summary table of model estimation results Supports export to csv, html and latex using the methods ``summary.as_csv()``, ``summary.as_html()`` and ``summary.as_latex()``. """ title = self._method + " Estimation Summary" top_left = [ ("Eq. Label:", self.equation_label), ("Dep. Variable:", self.dependent), ("Estimator:", self._method), ("No. Observations:", self.nobs), ("Date:", self._datetime.strftime("%a, %b %d %Y")), ("Time:", self._datetime.strftime("%H:%M:%S")), ("", ""), ] top_right = [ ("R-squared:", _str(self.rsquared)), ("Adj. R-squared:", _str(self.rsquared_adj)), ("Cov. Estimator:", self._cov_type), ("F-statistic:", _str(self.f_statistic.stat)), ("P-value (F-stat)", pval_format(self.f_statistic.pval)), ("Distribution:", str(self.f_statistic.dist_name)), ("", ""), ] stubs = [] vals = [] for stub, val in top_left: stubs.append(stub) vals.append([val]) table = SimpleTable(vals, txt_fmt=fmt_2cols, title=title, stubs=stubs) # create summary table instance smry = Summary() # Top Table # Parameter table fmt = fmt_2cols fmt["data_fmts"][1] = "%10s" top_right = [("%-21s" % (" " + k), v) for k, v in top_right] stubs = [] vals = [] for stub, val in top_right: stubs.append(stub) vals.append([val]) table.extend_right(SimpleTable(vals, stubs=stubs)) smry.tables.append(table) smry.tables.append( param_table(self, "Parameter Estimates", pad_bottom=True)) extra_text = [] instruments = self._instruments if instruments: endog = self._endog extra_text = [ "Endogenous: " + ", ".join(endog), "Instruments: " + ", ".join(instruments), ] extra_text.append("Covariance Estimator:") for line in str(self._cov_estimator).split("\n"): extra_text.append(line) if self._weight_estimator: extra_text.append("Weight Estimator:") for line in str(self._weight_estimator).split("\n"): extra_text.append(line) smry.add_extra_txt(extra_text) return smry
def summary(self): """:obj:`statsmodels.iolib.summary.Summary` : Summary table of model estimation results Supports export to csv, html and latex using the methods ``summary.as_csv()``, ``summary.as_html()`` and ``summary.as_latex()``. """ title = self._method + ' Estimation Summary' top_left = [('Eq. Label:', self.equation_label), ('Dep. Variable:', self.dependent), ('Estimator:', self._method), ('No. Observations:', self.nobs), ('Date:', self._datetime.strftime('%a, %b %d %Y')), ('Time:', self._datetime.strftime('%H:%M:%S')), ('', '')] top_right = [('R-squared:', _str(self.rsquared)), ('Adj. R-squared:', _str(self.rsquared_adj)), ('Cov. Estimator:', self._cov_type), ('F-statistic:', _str(self.f_statistic.stat)), ('P-value (F-stat)', pval_format(self.f_statistic.pval)), ('Distribution:', str(self.f_statistic.dist_name)), ('', '')] stubs = [] vals = [] for stub, val in top_left: stubs.append(stub) vals.append([val]) table = SimpleTable(vals, txt_fmt=fmt_2cols, title=title, stubs=stubs) # create summary table instance smry = Summary() # Top Table # Parameter table fmt = fmt_2cols fmt['data_fmts'][1] = '%10s' top_right = [('%-21s' % (' ' + k), v) for k, v in top_right] stubs = [] vals = [] for stub, val in top_right: stubs.append(stub) vals.append([val]) table.extend_right(SimpleTable(vals, stubs=stubs)) smry.tables.append(table) smry.tables.append(param_table(self, 'Parameter Estimates', pad_bottom=True)) extra_text = [] instruments = self._instruments if instruments: endog = self._endog extra_text = [] extra_text.append('Endogenous: ' + ', '.join(endog)) extra_text.append('Instruments: ' + ', '.join(instruments)) extra_text.append('Covariance Estimator:') for line in str(self._cov_estimator).split('\n'): extra_text.append(line) if self._weight_estimator: extra_text.append('Weight Estimator:') for line in str(self._weight_estimator).split('\n'): extra_text.append(line) smry.add_extra_txt(extra_text) return smry
def summary(self): """:obj:`statsmodels.iolib.summary.Summary` : Summary table of model estimation results Supports export to csv, html and latex using the methods ``summary.as_csv()``, ``summary.as_html()`` and ``summary.as_latex()``. """ title = 'System ' + self._method + ' Estimation Summary' top_left = [('Estimator:', self._method), ('No. Equations.:', str(len(self.equation_labels))), ('No. Observations:', str(self.resids.shape[0])), ('Date:', self._datetime.strftime('%a, %b %d %Y')), ('Time:', self._datetime.strftime('%H:%M:%S')), ('', ''), ('', '')] top_right = [('Overall R-squared:', _str(self.rsquared)), ('Cov. Estimator:', self._cov_type), ('Num. Constraints: ', self._num_constraints), ('', ''), ('', ''), ('', ''), ('', '')] stubs = [] vals = [] for stub, val in top_left: stubs.append(stub) vals.append([val]) table = SimpleTable(vals, txt_fmt=fmt_2cols, title=title, stubs=stubs) # create summary table instance smry = Summary() # Top Table # Parameter table fmt = fmt_2cols fmt['data_fmts'][1] = '%10s' top_right = [('%-21s' % (' ' + k), v) for k, v in top_right] stubs = [] vals = [] for stub, val in top_right: stubs.append(stub) vals.append([val]) table.extend_right(SimpleTable(vals, stubs=stubs)) smry.tables.append(table) for i, eqlabel in enumerate(self.equation_labels): last_row = i == (len(self.equation_labels) - 1) results = self.equations[eqlabel] dep_name = results.dependent title = 'Equation: {0}, Dependent Variable: {1}'.format(eqlabel, dep_name) pad_bottom = results.instruments is not None and not last_row smry.tables.append(param_table(results, title, pad_bottom=pad_bottom)) if results.instruments: formatted = format_wide(results.instruments, 80) if not last_row: formatted.append([' ']) smry.tables.append(SimpleTable(formatted, headers=['Instruments'])) extra_text = ['Covariance Estimator:'] for line in str(self._cov_estimator).split('\n'): extra_text.append(line) if self._weight_estimtor: extra_text.append('Weight Estimator:') for line in str(self._weight_estimtor).split('\n'): extra_text.append(line) smry.add_extra_txt(extra_text) return smry
def summary(self): """:obj:`statsmodels.iolib.summary.Summary` : Summary table of model estimation results Supports export to csv, html and latex using the methods ``summary.as_csv()``, ``summary.as_html()`` and ``summary.as_latex()``. """ title = self.name + ' Estimation Summary' top_left = [('No. Test Portfolios:', len(self._portfolio_names)), ('No. Factors:', len(self._factor_names)), ('No. Observations:', self.nobs), ('Date:', self._datetime.strftime('%a, %b %d %Y')), ('Time:', self._datetime.strftime('%H:%M:%S')), ('Cov. Estimator:', self._cov_type), ('', '')] j_stat = _str(self.j_statistic.stat) j_pval = pval_format(self.j_statistic.pval) j_dist = self.j_statistic.dist_name top_right = [('R-squared:', _str(self.rsquared)), ('J-statistic:', j_stat), ('P-value', j_pval), ('Distribution:', j_dist), ('', ''), ('', ''), ('', '')] stubs = [] vals = [] for stub, val in top_left: stubs.append(stub) vals.append([val]) table = SimpleTable(vals, txt_fmt=fmt_2cols, title=title, stubs=stubs) # create summary table instance smry = Summary() # Top Table # Parameter table fmt = fmt_2cols fmt['data_fmts'][1] = '%18s' top_right = [('%-21s' % (' ' + k), v) for k, v in top_right] stubs = [] vals = [] for stub, val in top_right: stubs.append(stub) vals.append([val]) table.extend_right(SimpleTable(vals, stubs=stubs)) smry.tables.append(table) rp = np.asarray(self.risk_premia)[:, None] se = np.asarray(self.risk_premia_se)[:, None] tstats = np.asarray(self.risk_premia / self.risk_premia_se) pvalues = 2 - 2 * stats.norm.cdf(np.abs(tstats)) ci = rp + se * stats.norm.ppf([[0.025, 0.975]]) param_data = np.c_[rp, se, tstats[:, None], pvalues[:, None], ci] data = [] for row in param_data: txt_row = [] for i, v in enumerate(row): f = _str if i == 3: f = pval_format txt_row.append(f(v)) data.append(txt_row) title = 'Risk Premia Estimates' table_stubs = list(self.risk_premia.index) header = [ 'Parameter', 'Std. Err.', 'T-stat', 'P-value', 'Lower CI', 'Upper CI' ] table = SimpleTable(data, stubs=table_stubs, txt_fmt=fmt_params, headers=header, title=title) smry.tables.append(table) smry.add_extra_txt([ 'Covariance estimator:', str(self._cov_est), 'See full_summary for complete results' ]) return smry
def summary(self) -> Summary: """ Model estimation summary. Returns ------- Summary Summary table of model estimation results Supports export to csv, html and latex using the methods ``summary.as_csv()``, ``summary.as_html()`` and ``summary.as_latex()``. """ smry = Summary() models = list(self._results.keys()) title = "Model Comparison" stubs = [ "Dep. Variable", "Estimator", "No. Observations", "Cov. Est.", "R-squared", "R-Squared (Within)", "R-Squared (Between)", "R-Squared (Overall)", "F-statistic", "P-value (F-stat)", ] dep_name = {} for key in self._results: dep_name[key] = self._results[key].model.dependent.vars[0] dep_name = Series(dep_name) vals = concat( [ dep_name, self.estimator_method, self.nobs, self.cov_estimator, self.rsquared, self.rsquared_within, self.rsquared_between, self.rsquared_overall, self.f_statistic, ], axis=1, ) vals = [[i for i in v] for v in vals.T.values] vals[2] = [str(v) for v in vals[2]] for i in range(4, len(vals)): f = _str if i == 9: f = pval_format vals[i] = [f(v) for v in vals[i]] params = self.params precision = getattr(self, self._precision) pvalues = np.asarray(self.pvalues) params_fmt = [] params_stub = [] for i in range(len(params)): formatted_and_starred = [] for v, pv in zip(params.values[i], pvalues[i]): formatted_and_starred.append(add_star(_str(v), pv, self._stars)) params_fmt.append(formatted_and_starred) precision_fmt = [] for v in precision.values[i]: v_str = _str(v) v_str = "({0})".format(v_str) if v_str.strip() else v_str precision_fmt.append(v_str) params_fmt.append(precision_fmt) params_stub.append(params.index[i]) params_stub.append(" ") vals = table_concat((vals, params_fmt)) stubs = stub_concat((stubs, params_stub)) all_effects = [] for key in self._results: res = self._results[key] effects = getattr(res, "included_effects", []) all_effects.append(effects) neffect = max(map(len, all_effects)) effects = [] effects_stub = ["Effects"] for i in range(neffect): if i > 0: effects_stub.append("") row = [] for j in range(len(self._results)): effect = all_effects[j] if len(effect) > i: row.append(effect[i]) else: row.append("") effects.append(row) if effects: vals = table_concat((vals, effects)) stubs = stub_concat((stubs, effects_stub)) txt_fmt = default_txt_fmt.copy() txt_fmt["data_aligns"] = "r" txt_fmt["header_align"] = "r" table = SimpleTable(vals, headers=models, title=title, stubs=stubs, txt_fmt=txt_fmt) smry.tables.append(table) prec_type = self._PRECISION_TYPES[self._precision] smry.add_extra_txt(["{0} reported in parentheses".format(prec_type)]) return smry