示例#1
0
 def test_debiased(self, kernel, data, bandwidth):
     wm = KernelWeightMatrix(debiased=True, kernel=kernel.kernel, bandwidth=bandwidth)
     weight = wm.weight_matrix(data.x, data.z, data.e)
     z, e, nobs, nvar = data.z, data.e, data.nobs, data.nvar
     bw = bandwidth or nobs - 2
     w = kernel.weight(bw, nobs - 1)
     ze = z * e
     s = ze.T @ ze
     for i in range(1, len(w)):
         op = ze[i:].T @ ze[:-i]
         s += w[i] * (op + op.T)
     assert_allclose(weight, s / (nobs - nvar))
     assert wm.config['bandwidth'] == bw
     assert wm.config['kernel'] == kernel.kernel
示例#2
0
 def test_kernel(self, data, kernel, bandwidth):
     c = IVGMMCovariance(
         data.x,
         data.y,
         data.z,
         data.params,
         data.i,
         "kernel",
         kernel=kernel.kernel,
         bandwidth=bandwidth,
     )
     s = KernelWeightMatrix(kernel=kernel.kernel,
                            bandwidth=bandwidth).weight_matrix(
                                data.x, data.z, data.e)
     x, z, nobs = data.x, data.z, data.nobs
     xzwswzx = x.T @ z @ s @ z.T @ x / data.nobs
     cov = data.xzizx_inv @ xzwswzx @ data.xzizx_inv
     cov = (cov + cov.T) / 2
     assert_allclose(c.cov, cov)
     assert c.config["kernel"] == kernel.kernel
     assert c.config["debiased"] is False
     assert c.config["bandwidth"] == bandwidth or nobs - 2
     c = IVGMMCovariance(data.x, data.y, data.z, data.params, data.i,
                         "kernel")
     assert "Kernel" in str(c)
示例#3
0
 def test_center(self, data, kernel, bandwidth):
     wm = KernelWeightMatrix(kernel.kernel,
                             bandwidth,
                             center=True,
                             optimal_bw=True)
     weight = wm.weight_matrix(data.x, data.z, data.e)
     z, e, nobs = data.z, data.e, data.nobs
     bw = bandwidth or wm.bandwidth
     w = kernel.weight(bw, nobs - 1)
     ze = z * e
     ze = ze - ze.mean(0)
     s = ze.T @ ze
     for i in range(1, len(w)):
         op = ze[i:].T @ ze[:-i]
         s += w[i] * (op + op.T)
     assert_allclose(weight, s / nobs)
     assert wm.config['bandwidth'] == bw
     assert wm.config['kernel'] == kernel.kernel
     for name in kernel.alt_names:
         wm = KernelWeightMatrix(name,
                                 bandwidth,
                                 center=True,
                                 optimal_bw=True)
         weight2 = wm.weight_matrix(data.x, data.z, data.e)
         assert_equal(weight, weight2)
示例#4
0
    def test_config(self, data, kernel, bandwidth):
        wm = KernelWeightMatrix(kernel=kernel.kernel, bandwidth=bandwidth)
        weight = wm.weight_matrix(data.x, data.z, data.e)
        z, e, nobs = data.z, data.e, data.nobs
        bw = bandwidth or wm.bandwidth
        w = kernel.weight(bw, nobs - 1)
        ze = z * e
        s = ze.T @ ze
        for i in range(1, len(w)):
            op = ze[i:].T @ ze[:-i]
            s += w[i] * (op + op.T)
        assert_allclose(weight, s / nobs)
        assert wm.config['center'] is False
        assert wm.config['debiased'] is False
        assert wm.config['bandwidth'] == bw
        assert wm.config['kernel'] == kernel.kernel

        for name in kernel.alt_names:
            wm = KernelWeightMatrix(kernel=name, bandwidth=bandwidth)
            weight2 = wm.weight_matrix(data.x, data.z, data.e)
            assert_equal(weight, weight2)