示例#1
0
 def __init__(self, n_in, n_units, n_out):
     super(MnistMLP, self).__init__(
         l1=link_binary_linear.BinaryLinear(n_in, n_units),
         b1=L.BatchNormalization(n_units),
         l2=link_binary_linear.BinaryLinear(n_units, n_units),
         b2=L.BatchNormalization(n_units),
         l3=link_binary_linear.BinaryLinear(n_units, n_out),
         b3=L.BatchNormalization(n_out),
     )
     self.train = True
示例#2
0
 def __init__(self):
     super(BinaryConnectMnistMLP, self).__init__()
     with self.init_scope():
         self.bfc0 = link_binary_linear.BinaryLinear(784, 2048)
         self.bn0 = L.BatchNormalization(2048)
         self.bfc1 = link_binary_linear.BinaryLinear(2048, 2048)
         self.bn1 = L.BatchNormalization(2048)
         self.bfc2 = link_binary_linear.BinaryLinear(2048, 2048)
         self.bn2 = L.BatchNormalization(2048)
         self.bfc3 = link_binary_linear.BinaryLinear(2048, 10)
         self.bn3 = L.BatchNormalization(10)
示例#3
0
 def __init__(self):
     super(Cifar10CNN, self).__init__(
         c1=link_binary_convolution.BinaryConvolution2D(3, 32, 5),
         b1=L.BatchNormalization(32),
         c2=link_binary_convolution.BinaryConvolution2D(32, 64, 5),
         b2=L.BatchNormalization(64),
         c3=link_binary_convolution.BinaryConvolution2D(64, 128, 5),
         b3=L.BatchNormalization(128),
         l1=link_binary_linear.BinaryLinear(128 * 20 * 20, 256),
         b4=L.BatchNormalization(256),
         l2=link_binary_linear.BinaryLinear(256, 10),
         b5=L.BatchNormalization(10))
     self.train = True
 def __init__(self):
     super(BinaryConnectMnistLeNet, self).__init__()
     with self.init_scope():
         self.bconv0 = link_binary_convolution.BinaryConvolution2D(1,
                                                                   64,
                                                                   ksize=5,
                                                                   pad=0,
                                                                   stride=1)
         self.bn0 = L.BatchNormalization(64)
         self.bconv1 = link_binary_convolution.BinaryConvolution2D(64,
                                                                   64,
                                                                   ksize=5,
                                                                   pad=0,
                                                                   stride=1)
         self.bn1 = L.BatchNormalization(64)
         self.bfc0 = link_binary_linear.BinaryLinear(1024, 512)
         self.bn2 = L.BatchNormalization(512)
         self.bfc1 = link_binary_linear.BinaryLinear(512, 10)
         self.bn3 = L.BatchNormalization(10)
    def __init__(self):
        super(CNN, self).__init__(

            conv0=L.Convolution2D(3,64,7, stride=2, pad=3, nobias=True),
            b_conv0=L.BatchNormalization(64),
            block0=RB.BlockStack(3,64,64,decre_ratio=4, kernel=(1,3,1), stride=(1,2,1), pad=(0,0,0),nobias=True), 
            b_block0=L.BatchNormalization(64),
            conv1=IC.Convolution2D(64,128,3, stride=1, pad=1, nobias=True),
            b_conv1=L.BatchNormalization(128),
            block1=RB.BlockStack(3,128,128,decre_ratio=4, kernel=(1,3,1), stride=(1,2,1), pad=(0,0,0),nobias=True), 
            b_block1=L.BatchNormalization(128),
            conv2=IC.Convolution2D(128,256,3, stride=1, pad=1, nobias=True),
            b_conv2=L.BatchNormalization(256),
            block2=RB.BlockStack(3,256,256,decre_ratio=4, kernel=(1,3,1), stride=(1,2,1), pad=(0,0,0),nobias=True), 
            b_block2=L.BatchNormalization(256),
            conv3=IC.Convolution2D(256,512,3, stride=1, pad=1, nobias=True),
            b_conv3=L.BatchNormalization(512),
            block3=RB.BlockStack(3,512,512,decre_ratio=4, kernel=(1,3,1), stride=(1,2,1), pad=(0,0,0),nobias=True), 
            b_block3=L.BatchNormalization(512),
            conv4=IC.Convolution2D(512,1024,3, stride=1, pad=1, nobias=True),
            b_conv4=L.BatchNormalization(1024),
            fc0=BL.BinaryLinear(4096,10),
            b_dense0=L.BatchNormalization(10)
        )
示例#6
0
 def __init__(self):
     super(CNN, self).__init__(conv0=IC.Convolution2D(3,
                                                      64,
                                                      3,
                                                      stride=1,
                                                      pad=1,
                                                      nobias=True),
                               b0=LBN.BatchNormalization(64),
                               conv1=BC.Convolution2D(64,
                                                      128,
                                                      3,
                                                      stride=1,
                                                      pad=1,
                                                      nobias=True),
                               b1=LBN.BatchNormalization(128),
                               conv2=BC.Convolution2D(128,
                                                      128,
                                                      3,
                                                      stride=1,
                                                      pad=1,
                                                      nobias=True),
                               b2=LBN.BatchNormalization(128),
                               fc0=BL.BinaryLinear(128, 3),
                               b3=LBN.BatchNormalization(3))