def main(_): demo_layout = lit_dtypes.LitComponentLayout( components={ 'Main': [ 'data-table-module', 'datapoint-editor-module', 'lit-slice-module', 'color-module', ], 'Predictions': ['classification-module', 'scalar-module'], 'Explanations': ['classification-module', 'salience-map-module'], }, description='Basic layout for image demo', ) datasets = {'imagenette': imagenette.ImagenetteDataset()} models = {'mobilenet': mobilenet.MobileNet()} interpreters = { 'Grad': image_gradient_maps.VanillaGradients(), 'Integrated Gradients': image_gradient_maps.IntegratedGradients(), 'Blur IG': image_gradient_maps.BlurIG(), 'Guided IG': image_gradient_maps.GuidedIG(), 'XRAI': image_gradient_maps.XRAI(), 'XRAI GIG': image_gradient_maps.XRAIGIG(), } lit_demo = dev_server.Server(models, datasets, interpreters=interpreters, generators={}, layouts={'demo_layout': demo_layout}, **server_flags.get_flags()) return lit_demo.serve()
"ontonotes_edgeprobe_path", None, "Path to OntoNotes coreference data in edge probing JSON format. " "This is needed for training, and optional for running LIT.") # Custom frontend layout; see client/lib/types.ts WINOGENDER_LAYOUT = lit_dtypes.LitComponentLayout( components={ "Main": [ "data-table-module", "datapoint-editor-module", "lit-slice-module", "color-module", ], "Predictions": [ "span-graph-gold-module", "span-graph-module", "classification-module", ], "Performance": [ "metrics-module", "scalar-module", "confusion-matrix-module", ], }, description="Custom layout for the Winogender coreference demo.", ) CUSTOM_LAYOUTS = {"winogender": WINOGENDER_LAYOUT} FLAGS.set_default("default_layout", "winogender")
flags.DEFINE_bool( "load_bwb", False, "If true, will load examples from the Billion Word Benchmark dataset. This may download a lot of data the first time you run it, so disable by default for the quick-start example." ) # Custom frontend layout; see client/lib/types.ts LM_LAYOUT = lit_dtypes.LitComponentLayout( components={ "Main": [ "embeddings-module", "data-table-module", "datapoint-editor-module", "lit-slice-module", "color-module", ], "Predictions": [ "lm-prediction-module", "confusion-matrix-module", ], "Counterfactuals": ["generator-module"], }, description="Custom layout for language models.", ) CUSTOM_LAYOUTS = {"lm": LM_LAYOUT} # You can also change this via URL param e.g. localhost:5432/?layout=default FLAGS.set_default("default_layout", "lm") def get_wsgi_app():