示例#1
0
def get_other_results(queries, qml_rankings, num_ranks=None):
    document_lookup = read_cache('./doc_lookup.json', get_robust_documents)
    document_title_to_id = read_cache('./document_title_to_id.json',
                                      lambda: print('failed'))
    document_id_to_title = _.invert(document_title_to_id)
    doc_ids = range(len(document_id_to_title))
    documents = [
        document_lookup[document_id_to_title[doc_id]] for doc_id in doc_ids
    ]
    tokenizer = Tokenizer(
        rules=[handle_caps, fix_html, spec_add_spaces, rm_useless_spaces])
    tokenized_documents = read_cache('tok_docs.json',
                                     lambda: tokenizer.process_all(documents))
    tokenized_queries = tokenizer.process_all(queries)
    bm25 = BM25(tokenized_documents)
    average_idf = sum(float(val) for val in bm25.idf.values()) / len(bm25.idf)
    bm25_rankings = []
    glove_rankings = []
    rm3_rankings = []
    glove = get_glove_lookup(embedding_dim=300, use_large_embed=True)
    docs_lms = _calc_docs_lms(bm25.df, bm25.f)
    for q, qml_ranking in progressbar(zip(tokenized_queries, qml_rankings)):
        bm25_rankings.append(
            _get_bm25_ranking(bm25, qml_ranking, q, average_idf=average_idf))
        glove_rankings.append(
            _get_glove_ranking(glove, tokenized_documents, qml_ranking, q))
        rm3_rankings.append(_get_rm3_ranking(docs_lms, bm25.f, qml_ranking, q))
    return bm25_rankings, glove_rankings, rm3_rankings
示例#2
0
def main():
  document_lookup = read_cache('./doc_lookup.json', get_robust_documents)
  document_title_to_id = create_id_lookup(document_lookup.keys())
  document_id_to_title = _.invert(document_title_to_id)
  doc_ids = range(len(document_id_to_title))
  documents = [document_lookup[document_id_to_title[doc_id]] for doc_id in doc_ids]
  tokenizer = Tokenizer()
  tokenized_documents = read_cache('tok_docs.json',
                                   lambda: tokenizer.process_all(documents))
  bm25 = BM25(tokenized_documents)
  with open('./doc_word_idf.json', 'w+') as fh:
    json.dump(bm25.idf, fh)
示例#3
0
def baselines_eval():
    rankings_to_eval = read_query_test_rankings()
    qrels = parse_qrels()
    query_ids = list(qrels.keys())
    query_lookup = get_robust_eval_queries()
    queries = [query_lookup[query_id] for query_id in query_ids]
    k = 10 if len(sys.argv) == 1 else int(sys.argv[1])
    document_lookup = read_cache(name('./doc_lookup.json', ['with_titles']),
                                 get_robust_documents_with_titles)
    document_title_to_id = read_cache('./document_title_to_id.json',
                                      lambda: print('failed'))
    ordered_rankings_to_eval = [[
        document_title_to_id[title] for title in rankings_to_eval[query]
    ] for query in query_ids]
    ordered_qrels = [[document_title_to_id[title] for title in qrels[query]]
                     for query in query_ids]
    document_id_to_title = _.invert(document_title_to_id)
    doc_ids = range(len(document_id_to_title))
    documents = [
        document_lookup[document_id_to_title[doc_id]] for doc_id in doc_ids
    ]
    tokenizer = Tokenizer(
        rules=[handle_caps, fix_html, spec_add_spaces, rm_useless_spaces])
    tokenized_documents = read_cache(
        'tok_docs.json',
        lambda: tokenizer.process_all(clean_documents(documents)))
    tokenized_queries = tokenizer.process_all(clean_documents(queries))
    bm25 = gensim_bm25.BM25(tokenized_documents)
    # with open('./caches/106756_most_common_doc.json', 'r') as fh:
    #   doc_token_set = set(json.load(fh))
    # corpus, token_lookup = tokens_to_indexes(tokenized_documents,
    #                                          None,
    #                                          token_set=doc_token_set)
    # corpus = [[[token_lookup[term], f] for term, f in doc_fs.items()] for doc_fs in bm25.f]
    # tfidf = TfidfModel(corpus)
    # lsi = LsiModel(tfidf, id2word=_.invert(token_lookup), num_topics=300)
    glove_rankings = []
    # lsi_rankings = []
    glove = get_glove_lookup(embedding_dim=300, use_large_embed=True)
    encoded_docs = torch.stack(
        [encode_glove_fs(glove, bm25.idf, doc_fs) for doc_fs in bm25.f])
    encoded_docs = encoded_docs / torch.norm(encoded_docs, dim=1).unsqueeze(1)
    for q, qml_ranking in progressbar(zip(tokenized_queries,
                                          ordered_rankings_to_eval),
                                      max_value=len(tokenized_queries)):
        doc_ids = qml_ranking[:k] if '--rerank' in sys.argv else None
        glove_rankings.append(
            rank_glove(glove, bm25.idf, encoded_docs, q, doc_ids=doc_ids))
        # lsi_rankings.append(rank_lsi(lsi, tfidf, [token_lookup[term] if term in token_lookup else 0 for term in q], doc_ids=doc_ids))
    print('indri:', metrics_at_k(ordered_rankings_to_eval, ordered_qrels, k))
    print('glove:', metrics_at_k(glove_rankings, ordered_qrels, k))
示例#4
0
def main():
    path = './indri/robust_train_query_params_without_unks.xml'
    try:
        os.remove(path)
    except OSError:
        pass
    with open('./caches/pairwise_train_ranking_106756.json') as fh:
        query_ranking_pairs = json.load(fh)
        queries_by_tok_id, qml = zip(*query_ranking_pairs)
    parsed_queries, query_token_lookup = read_cache(
        './parsed_robust_queries_dict.json', lambda: print('failed'))
    inv = _.invert(query_token_lookup)
    queries = [
        ' '.join([inv[q] for q in query]) for query in queries_by_tok_id
    ]
    with open(path, 'a+') as fh:
        fh.write('<parameters>\n')
        for query_name, query_text in enumerate(queries):
            query_name = str(query_name + 1)
            if len(query_text) == 0: continue
            fh.write('<query>\n')
            fh.write('<number>' + query_name + '</number>\n')
            fh.write('<text>\n')
            fh.write('#combine( ' + query_text + ' )\n')
            fh.write('</text>\n')
            fh.write('</query>\n')
        fh.write('</parameters>\n')
示例#5
0
def basic_eval():
    path = './indri/query_result_test'
    path = path + '_' + sys.argv[3] if len(sys.argv) >= 4 else path
    rankings_to_eval = read_query_test_rankings(path=path)
    qrels = parse_qrels()
    query_ids = list(qrels.keys())[50:]
    k = 10 if len(sys.argv) == 1 else int(sys.argv[1])
    document_title_to_id = read_cache('./document_title_to_id.json',
                                      lambda: print('failed'))
    ordered_rankings_to_eval = [[
        document_title_to_id[title] for title in rankings_to_eval[query]
    ] for query in query_ids]
    ordered_qrels = [[document_title_to_id[title] for title in qrels[query]]
                     for query in query_ids]
    print('indri:', metrics_at_k(ordered_rankings_to_eval, ordered_qrels, k))
示例#6
0
def main():
    with open('./caches/pairwise_train_ranking_106756.json') as fh:
        query_ranking_pairs = json.load(fh)
    queries_by_tok_id, qml = zip(*query_ranking_pairs)
    parsed_queries, query_token_lookup = read_cache(
        './parsed_robust_queries_dict.json', lambda: print('failed'))
    inv = _.invert(query_token_lookup)
    queries = [
        ' '.join([inv[q] for q in query]) for query in queries_by_tok_id
    ]
    if len(sys.argv) > 1:
        lim = int(sys.argv[1])
    else:
        lim = None
    bm25_rankings, glove_rankings, rm3_rankings = get_other_results(
        queries[:lim], qml[:lim])
    agree_ctr, num_combos = check_overlap(qml[:lim], bm25_rankings)
    print(agree_ctr, num_combos, agree_ctr / num_combos)
    agree_ctr, num_combos = check_overlap(qml[:lim], glove_rankings)
    print(agree_ctr, num_combos, agree_ctr / num_combos)
    agree_ctr, num_combos = check_overlap(qml[:lim], rm3_rankings)
    print(agree_ctr, num_combos, agree_ctr / num_combos)
示例#7
0
def main():
    document_token_embed_len = 100
    query_token_embed_len = 100
    num_neg_samples = 4
    document_lookup = read_cache('./wiki_page_lookup.pkl', get_wiki_pages)
    document_title_to_id = create_id_lookup(document_lookup.keys())
    documents, document_token_lookup = read_cache(
        './parsed_wiki_pages.pkl',
        lambda: prepare(document_lookup, document_title_to_id))
    query_lookup = read_cache('./wiki_mention_lookup.pkl', get_wiki_mentions)
    query_name_to_id = create_id_lookup(query_lookup.keys())
    queries, query_token_lookup = read_cache(
        './parsed_wiki_mentions.pkl',
        lambda: prepare(query_lookup, query_name_to_id))
    rel_query_document_pairs = read_cache(
        './mention_entity_pairs.pkl',
        lambda: [[query_name_to_id[pair[0]], document_title_to_id[pair[1]]]
                 for pair in get_mention_page_title_pairs()
                 if pair[1] in document_title_to_id])
    dataset = TensorDataset(torch.tensor(rel_query_document_pairs))
    batch_sampler = BatchSampler(RandomSampler(dataset), 100, False)
    dataloader = DataLoader(dataset, batch_sampler=batch_sampler)
    num_doc_tokens = len(document_token_lookup)
    glove_lookup = get_glove_lookup()
    document_token_embeds = init_embedding(glove_lookup, document_token_lookup,
                                           num_doc_tokens,
                                           document_token_embed_len)
    dont_update(document_token_embeds)
    num_query_tokens = len(query_token_lookup)
    query_token_embeds = init_embedding(glove_lookup, query_token_lookup,
                                        num_query_tokens,
                                        query_token_embed_len)
    doc_tensors = torch.tensor(
        pad_to_max_len([doc[:num_doc_tokens] for doc in documents]))
    query_tensors = torch.tensor(pad_to_max_len(queries))
    device = torch.device('cuda')
    query_token_embeds = query_token_embeds.to(device)
    document_token_embeds = document_token_embeds.to(device)
    opt = torch.optim.Adam(query_token_embeds.parameters())
    for batch in progressbar(dataloader, max_value=len(batch_sampler)):
        batch = batch[0]
        opt.zero_grad()
        negative_doc_ids = torch.randint(len(document_lookup),
                                         (len(batch), num_neg_samples),
                                         device=device)
        doc_batch = document_token_embeds(doc_tensors[torch.transpose(
            batch, 0, 1)[1]].to(device))
        query_batch = query_token_embeds(query_tensors[torch.transpose(
            batch, 0, 1)[0]].to(device))
        neg_docs = document_token_embeds(
            doc_tensors[negative_doc_ids].to(device))
        pos_scores = F.tanh(torch.sum(
            doc_batch.sum(1) * query_batch.sum(1), 1))
        neg_scores = torch.sum(
            F.tanh(
                torch.sum(
                    neg_docs.sum(2) * query_batch.sum(1).unsqueeze(1), 2)), 1)
        margin_violation = 1 - pos_scores + neg_scores
        loss = torch.max(torch.zeros_like(margin_violation),
                         margin_violation).sum() / len(batch)
        loss.backward()
        opt.step()
    torch.save(query_token_embeds.state_dict(), './rel_embeds_save')
示例#8
0
def main():
    global model_to_save
    global experiment
    global rabbit
    rabbit = MyRabbit(args)
    if rabbit.model_params.dont_limit_num_uniq_tokens:
        raise NotImplementedError()
    if rabbit.model_params.frame_as_qa: raise NotImplementedError
    if rabbit.run_params.drop_val_loss_calc: raise NotImplementedError
    if rabbit.run_params.use_softrank_influence and not rabbit.run_params.freeze_all_but_last_for_influence:
        raise NotImplementedError
    if rabbit.train_params.weight_influence: raise NotImplementedError
    experiment = Experiment(rabbit.train_params + rabbit.model_params +
                            rabbit.run_params)
    print('Model name:', experiment.model_name)
    use_pretrained_doc_encoder = rabbit.model_params.use_pretrained_doc_encoder
    use_pointwise_loss = rabbit.train_params.use_pointwise_loss
    query_token_embed_len = rabbit.model_params.query_token_embed_len
    document_token_embed_len = rabbit.model_params.document_token_embed_len
    _names = []
    if not rabbit.model_params.dont_include_titles:
        _names.append('with_titles')
    if rabbit.train_params.num_doc_tokens_to_consider != -1:
        _names.append('num_doc_toks_' +
                      str(rabbit.train_params.num_doc_tokens_to_consider))
    if not rabbit.run_params.just_caches:
        if rabbit.model_params.dont_include_titles:
            document_lookup = read_cache(name('./doc_lookup.json', _names),
                                         get_robust_documents)
        else:
            document_lookup = read_cache(name('./doc_lookup.json', _names),
                                         get_robust_documents_with_titles)
    num_doc_tokens_to_consider = rabbit.train_params.num_doc_tokens_to_consider
    document_title_to_id = read_cache(
        './document_title_to_id.json',
        lambda: create_id_lookup(document_lookup.keys()))
    with open('./caches/106756_most_common_doc.json', 'r') as fh:
        doc_token_set = set(json.load(fh))
        tokenizer = Tokenizer()
        tokenized = set(
            sum(
                tokenizer.process_all(list(
                    get_robust_eval_queries().values())), []))
        doc_token_set = doc_token_set.union(tokenized)
    use_bow_model = not any([
        rabbit.model_params[attr] for attr in
        ['use_doc_out', 'use_cnn', 'use_lstm', 'use_pretrained_doc_encoder']
    ])
    use_bow_model = use_bow_model and not rabbit.model_params.dont_use_bow
    if use_bow_model:
        documents, document_token_lookup = read_cache(
            name(f'./docs_fs_tokens_limit_uniq_toks_qrels_and_106756.pkl',
                 _names),
            lambda: prepare_fs(document_lookup,
                               document_title_to_id,
                               num_tokens=num_doc_tokens_to_consider,
                               token_set=doc_token_set))
        if rabbit.model_params.keep_top_uniq_terms is not None:
            documents = [
                dict(
                    nlargest(rabbit.model_params.keep_top_uniq_terms,
                             _.to_pairs(doc), itemgetter(1)))
                for doc in documents
            ]
    else:
        documents, document_token_lookup = read_cache(
            name(
                f'./parsed_docs_{num_doc_tokens_to_consider}_tokens_limit_uniq_toks_qrels_and_106756.json',
                _names), lambda: prepare(document_lookup,
                                         document_title_to_id,
                                         num_tokens=num_doc_tokens_to_consider,
                                         token_set=doc_token_set))
    if not rabbit.run_params.just_caches:
        train_query_lookup = read_cache('./robust_train_queries.json',
                                        get_robust_train_queries)
        train_query_name_to_id = read_cache(
            './train_query_name_to_id.json',
            lambda: create_id_lookup(train_query_lookup.keys()))
    train_queries, query_token_lookup = read_cache(
        './parsed_robust_queries_dict.json',
        lambda: prepare(train_query_lookup,
                        train_query_name_to_id,
                        token_lookup=document_token_lookup,
                        token_set=doc_token_set,
                        drop_if_any_unk=True))
    query_tok_to_doc_tok = {
        idx: document_token_lookup.get(query_token)
        or document_token_lookup['<unk>']
        for query_token, idx in query_token_lookup.items()
    }
    names = [RANKER_NAME_TO_SUFFIX[rabbit.train_params.ranking_set]]
    if rabbit.train_params.use_pointwise_loss or not rabbit.run_params.just_caches:
        train_data = read_cache(
            name('./robust_train_query_results_tokens_qrels_and_106756.json',
                 names), lambda: read_query_result(
                     train_query_name_to_id,
                     document_title_to_id,
                     train_queries,
                     path='./indri/query_result' + RANKER_NAME_TO_SUFFIX[
                         rabbit.train_params.ranking_set]))
    else:
        train_data = []
    q_embed_len = rabbit.model_params.query_token_embed_len
    doc_embed_len = rabbit.model_params.document_token_embed_len
    if rabbit.model_params.append_difference or rabbit.model_params.append_hadamard:
        assert q_embed_len == doc_embed_len, 'Must use same size doc and query embeds when appending diff or hadamard'
    if q_embed_len == doc_embed_len:
        glove_lookup = get_glove_lookup(
            embedding_dim=q_embed_len,
            use_large_embed=rabbit.model_params.use_large_embed,
            use_word2vec=rabbit.model_params.use_word2vec)
        q_glove_lookup = glove_lookup
        doc_glove_lookup = glove_lookup
    else:
        q_glove_lookup = get_glove_lookup(
            embedding_dim=q_embed_len,
            use_large_embed=rabbit.model_params.use_large_embed,
            use_word2vec=rabbit.model_params.use_word2vec)
        doc_glove_lookup = get_glove_lookup(
            embedding_dim=doc_embed_len,
            use_large_embed=rabbit.model_params.use_large_embed,
            use_word2vec=rabbit.model_params.use_word2vec)
    num_query_tokens = len(query_token_lookup)
    num_doc_tokens = len(document_token_lookup)
    doc_encoder = None
    if use_pretrained_doc_encoder or rabbit.model_params.use_doc_out:
        doc_encoder, document_token_embeds = get_doc_encoder_and_embeddings(
            document_token_lookup, rabbit.model_params.only_use_last_out)
        if rabbit.model_params.use_glove:
            query_token_embeds_init = init_embedding(q_glove_lookup,
                                                     query_token_lookup,
                                                     num_query_tokens,
                                                     query_token_embed_len)
        else:
            query_token_embeds_init = from_doc_to_query_embeds(
                document_token_embeds, document_token_lookup,
                query_token_lookup)
        if not rabbit.train_params.dont_freeze_pretrained_doc_encoder:
            dont_update(doc_encoder)
        if rabbit.model_params.use_doc_out:
            doc_encoder = None
    else:
        document_token_embeds = init_embedding(doc_glove_lookup,
                                               document_token_lookup,
                                               num_doc_tokens,
                                               document_token_embed_len)
        if rabbit.model_params.use_single_word_embed_set:
            query_token_embeds_init = document_token_embeds
        else:
            query_token_embeds_init = init_embedding(q_glove_lookup,
                                                     query_token_lookup,
                                                     num_query_tokens,
                                                     query_token_embed_len)
    if not rabbit.train_params.dont_freeze_word_embeds:
        dont_update(document_token_embeds)
        dont_update(query_token_embeds_init)
    else:
        do_update(document_token_embeds)
        do_update(query_token_embeds_init)
    if rabbit.train_params.add_rel_score:
        query_token_embeds, additive = get_additive_regularized_embeds(
            query_token_embeds_init)
        rel_score = RelScore(query_token_embeds, document_token_embeds,
                             rabbit.model_params, rabbit.train_params)
    else:
        query_token_embeds = query_token_embeds_init
        additive = None
        rel_score = None
    eval_query_lookup = get_robust_eval_queries()
    eval_query_name_document_title_rels = get_robust_rels()
    test_query_names = []
    val_query_names = []
    for query_name in eval_query_lookup:
        if len(val_query_names) >= 50: test_query_names.append(query_name)
        else: val_query_names.append(query_name)
    test_query_name_document_title_rels = _.pick(
        eval_query_name_document_title_rels, test_query_names)
    test_query_lookup = _.pick(eval_query_lookup, test_query_names)
    test_query_name_to_id = create_id_lookup(test_query_lookup.keys())
    test_queries, __ = prepare(test_query_lookup,
                               test_query_name_to_id,
                               token_lookup=query_token_lookup)
    eval_ranking_candidates = read_query_test_rankings(
        './indri/query_result_test' +
        RANKER_NAME_TO_SUFFIX[rabbit.train_params.ranking_set])
    test_candidates_data = read_query_result(
        test_query_name_to_id,
        document_title_to_id,
        dict(zip(range(len(test_queries)), test_queries)),
        path='./indri/query_result_test' +
        RANKER_NAME_TO_SUFFIX[rabbit.train_params.ranking_set])
    test_ranking_candidates = process_raw_candidates(test_query_name_to_id,
                                                     test_queries,
                                                     document_title_to_id,
                                                     test_query_names,
                                                     eval_ranking_candidates)
    test_data = process_rels(test_query_name_document_title_rels,
                             document_title_to_id, test_query_name_to_id,
                             test_queries)
    val_query_name_document_title_rels = _.pick(
        eval_query_name_document_title_rels, val_query_names)
    val_query_lookup = _.pick(eval_query_lookup, val_query_names)
    val_query_name_to_id = create_id_lookup(val_query_lookup.keys())
    val_queries, __ = prepare(val_query_lookup,
                              val_query_name_to_id,
                              token_lookup=query_token_lookup)
    val_candidates_data = read_query_result(
        val_query_name_to_id,
        document_title_to_id,
        dict(zip(range(len(val_queries)), val_queries)),
        path='./indri/query_result_test' +
        RANKER_NAME_TO_SUFFIX[rabbit.train_params.ranking_set])
    val_ranking_candidates = process_raw_candidates(val_query_name_to_id,
                                                    val_queries,
                                                    document_title_to_id,
                                                    val_query_names,
                                                    eval_ranking_candidates)
    val_data = process_rels(val_query_name_document_title_rels,
                            document_title_to_id, val_query_name_to_id,
                            val_queries)
    train_normalized_score_lookup = read_cache(
        name('./train_normalized_score_lookup.pkl', names),
        lambda: get_normalized_score_lookup(train_data))
    test_normalized_score_lookup = get_normalized_score_lookup(
        test_candidates_data)
    val_normalized_score_lookup = get_normalized_score_lookup(
        val_candidates_data)
    if use_pointwise_loss:
        normalized_train_data = read_cache(
            name('./normalized_train_query_data_qrels_and_106756.json', names),
            lambda: normalize_scores_query_wise(train_data))
        collate_fn = lambda samples: collate_query_samples(
            samples,
            use_bow_model=use_bow_model,
            use_dense=rabbit.model_params.use_dense)
        train_dl = build_query_dataloader(
            documents,
            normalized_train_data,
            rabbit.train_params,
            rabbit.model_params,
            cache=name('train_ranking_qrels_and_106756.json', names),
            limit=10,
            query_tok_to_doc_tok=query_tok_to_doc_tok,
            normalized_score_lookup=train_normalized_score_lookup,
            use_bow_model=use_bow_model,
            collate_fn=collate_fn,
            is_test=False)
        test_dl = build_query_dataloader(
            documents,
            test_data,
            rabbit.train_params,
            rabbit.model_params,
            query_tok_to_doc_tok=query_tok_to_doc_tok,
            normalized_score_lookup=test_normalized_score_lookup,
            use_bow_model=use_bow_model,
            collate_fn=collate_fn,
            is_test=True)
        val_dl = build_query_dataloader(
            documents,
            val_data,
            rabbit.train_params,
            rabbit.model_params,
            query_tok_to_doc_tok=query_tok_to_doc_tok,
            normalized_score_lookup=val_normalized_score_lookup,
            use_bow_model=use_bow_model,
            collate_fn=collate_fn,
            is_test=True)
        model = PointwiseScorer(query_token_embeds, document_token_embeds,
                                doc_encoder, rabbit.model_params,
                                rabbit.train_params)
    else:
        if rabbit.train_params.use_noise_aware_loss:
            ranker_query_str_to_rankings = get_ranker_query_str_to_rankings(
                train_query_name_to_id,
                document_title_to_id,
                train_queries,
                limit=rabbit.train_params.num_snorkel_train_queries)
            query_names = reduce(
                lambda acc, query_to_ranking: acc.intersection(
                    set(query_to_ranking.keys()))
                if len(acc) != 0 else set(query_to_ranking.keys()),
                ranker_query_str_to_rankings.values(), set())
            all_ranked_lists_by_ranker = _.map_values(
                ranker_query_str_to_rankings, lambda query_to_ranking:
                [query_to_ranking[query] for query in query_names])
            ranker_query_str_to_pairwise_bins = get_ranker_query_str_to_pairwise_bins(
                train_query_name_to_id,
                document_title_to_id,
                train_queries,
                limit=rabbit.train_params.num_train_queries)
            snorkeller = Snorkeller(ranker_query_str_to_pairwise_bins)
            snorkeller.train(all_ranked_lists_by_ranker)
            calc_marginals = snorkeller.calc_marginals
        else:
            calc_marginals = None
        collate_fn = lambda samples: collate_query_pairwise_samples(
            samples,
            use_bow_model=use_bow_model,
            calc_marginals=calc_marginals,
            use_dense=rabbit.model_params.use_dense)
        if rabbit.run_params.load_influences:
            try:
                with open(rabbit.run_params.influences_path) as fh:
                    pairs_to_flip = defaultdict(set)
                    for pair, influence in json.load(fh):
                        if rabbit.train_params.use_pointwise_loss:
                            condition = True
                        else:
                            condition = influence < rabbit.train_params.influence_thresh
                        if condition:
                            query = tuple(pair[1])
                            pairs_to_flip[query].add(tuple(pair[0]))
            except FileNotFoundError:
                pairs_to_flip = None
        else:
            pairs_to_flip = None
        train_dl = build_query_pairwise_dataloader(
            documents,
            train_data,
            rabbit.train_params,
            rabbit.model_params,
            pairs_to_flip=pairs_to_flip,
            cache=name('train_ranking_qrels_and_106756.json', names),
            limit=10,
            query_tok_to_doc_tok=query_tok_to_doc_tok,
            normalized_score_lookup=train_normalized_score_lookup,
            use_bow_model=use_bow_model,
            collate_fn=collate_fn,
            is_test=False)
        test_dl = build_query_pairwise_dataloader(
            documents,
            test_data,
            rabbit.train_params,
            rabbit.model_params,
            query_tok_to_doc_tok=query_tok_to_doc_tok,
            normalized_score_lookup=test_normalized_score_lookup,
            use_bow_model=use_bow_model,
            collate_fn=collate_fn,
            is_test=True)
        val_dl = build_query_pairwise_dataloader(
            documents,
            val_data,
            rabbit.train_params,
            rabbit.model_params,
            query_tok_to_doc_tok=query_tok_to_doc_tok,
            normalized_score_lookup=val_normalized_score_lookup,
            use_bow_model=use_bow_model,
            collate_fn=collate_fn,
            is_test=True)
        val_rel_dl = build_query_pairwise_dataloader(
            documents,
            val_data,
            rabbit.train_params,
            rabbit.model_params,
            query_tok_to_doc_tok=query_tok_to_doc_tok,
            normalized_score_lookup=val_normalized_score_lookup,
            use_bow_model=use_bow_model,
            collate_fn=collate_fn,
            is_test=True,
            rel_vs_irrel=True,
            candidates=val_ranking_candidates,
            num_to_rank=rabbit.run_params.num_to_rank)
        model = PairwiseScorer(query_token_embeds,
                               document_token_embeds,
                               doc_encoder,
                               rabbit.model_params,
                               rabbit.train_params,
                               use_bow_model=use_bow_model)
    train_ranking_dataset = RankingDataset(
        documents,
        train_dl.dataset.rankings,
        rabbit.train_params,
        rabbit.model_params,
        rabbit.run_params,
        query_tok_to_doc_tok=query_tok_to_doc_tok,
        normalized_score_lookup=train_normalized_score_lookup,
        use_bow_model=use_bow_model,
        use_dense=rabbit.model_params.use_dense)
    test_ranking_dataset = RankingDataset(
        documents,
        test_ranking_candidates,
        rabbit.train_params,
        rabbit.model_params,
        rabbit.run_params,
        relevant=test_dl.dataset.rankings,
        query_tok_to_doc_tok=query_tok_to_doc_tok,
        cheat=rabbit.run_params.cheat,
        normalized_score_lookup=test_normalized_score_lookup,
        use_bow_model=use_bow_model,
        use_dense=rabbit.model_params.use_dense)
    val_ranking_dataset = RankingDataset(
        documents,
        val_ranking_candidates,
        rabbit.train_params,
        rabbit.model_params,
        rabbit.run_params,
        relevant=val_dl.dataset.rankings,
        query_tok_to_doc_tok=query_tok_to_doc_tok,
        cheat=rabbit.run_params.cheat,
        normalized_score_lookup=val_normalized_score_lookup,
        use_bow_model=use_bow_model,
        use_dense=rabbit.model_params.use_dense)
    if rabbit.train_params.memorize_test:
        train_dl = test_dl
        train_ranking_dataset = test_ranking_dataset
    model_data = DataBunch(train_dl,
                           val_rel_dl,
                           test_dl,
                           collate_fn=collate_fn,
                           device=torch.device('cuda') if
                           torch.cuda.is_available() else torch.device('cpu'))
    multi_objective_model = MultiObjective(model, rabbit.train_params,
                                           rel_score, additive)
    model_to_save = multi_objective_model
    if rabbit.train_params.memorize_test:
        try:
            del train_data
        except:
            pass
    if not rabbit.run_params.just_caches:
        del document_lookup
        del train_query_lookup
    del query_token_lookup
    del document_token_lookup
    del train_queries
    try:
        del glove_lookup
    except UnboundLocalError:
        del q_glove_lookup
        del doc_glove_lookup
    if rabbit.run_params.load_model:
        try:
            multi_objective_model.load_state_dict(
                torch.load(rabbit.run_params.load_path))
        except RuntimeError:
            dp = nn.DataParallel(multi_objective_model)
            dp.load_state_dict(torch.load(rabbit.run_params.load_path))
            multi_objective_model = dp.module
    else:
        train_model(multi_objective_model, model_data, train_ranking_dataset,
                    val_ranking_dataset, test_ranking_dataset,
                    rabbit.train_params, rabbit.model_params,
                    rabbit.run_params, experiment)
    if rabbit.train_params.fine_tune_on_val:
        fine_tune_model_data = DataBunch(
            val_rel_dl,
            val_rel_dl,
            test_dl,
            collate_fn=collate_fn,
            device=torch.device('cuda')
            if torch.cuda.is_available() else torch.device('cpu'))
        train_model(multi_objective_model,
                    fine_tune_model_data,
                    val_ranking_dataset,
                    val_ranking_dataset,
                    test_ranking_dataset,
                    rabbit.train_params,
                    rabbit.model_params,
                    rabbit.run_params,
                    experiment,
                    load_path=rabbit.run_params.load_path)
    multi_objective_model.eval()
    device = model_data.device
    gpu_multi_objective_model = multi_objective_model.to(device)
    if rabbit.run_params.calc_influence:
        if rabbit.run_params.freeze_all_but_last_for_influence:
            last_layer_idx = _.find_last_index(
                multi_objective_model.model.pointwise_scorer.layers,
                lambda layer: isinstance(layer, nn.Linear))
            to_last_layer = lambda x: gpu_multi_objective_model(
                *x, to_idx=last_layer_idx)
            last_layer = gpu_multi_objective_model.model.pointwise_scorer.layers[
                last_layer_idx]
            diff_wrt = [p for p in last_layer.parameters() if p.requires_grad]
        else:
            diff_wrt = None
        test_hvps = calc_test_hvps(
            multi_objective_model.loss,
            gpu_multi_objective_model,
            DeviceDataLoader(train_dl, device, collate_fn=collate_fn),
            val_rel_dl,
            rabbit.run_params,
            diff_wrt=diff_wrt,
            show_progress=True,
            use_softrank_influence=rabbit.run_params.use_softrank_influence)
        influences = []
        if rabbit.train_params.use_pointwise_loss:
            num_real_samples = len(train_dl.dataset)
        else:
            num_real_samples = train_dl.dataset._num_pos_pairs
        if rabbit.run_params.freeze_all_but_last_for_influence:
            _sampler = SequentialSamplerWithLimit(train_dl.dataset,
                                                  num_real_samples)
            _batch_sampler = BatchSampler(_sampler,
                                          rabbit.train_params.batch_size,
                                          False)
            _dl = DataLoader(train_dl.dataset,
                             batch_sampler=_batch_sampler,
                             collate_fn=collate_fn)
            sequential_train_dl = DeviceDataLoader(_dl,
                                                   device,
                                                   collate_fn=collate_fn)
            influences = calc_dataset_influence(gpu_multi_objective_model,
                                                to_last_layer,
                                                sequential_train_dl,
                                                test_hvps,
                                                sum_p=True).tolist()
        else:
            for i in progressbar(range(num_real_samples)):
                train_sample = train_dl.dataset[i]
                x, labels = to_device(collate_fn([train_sample]), device)
                device_train_sample = (x, labels.squeeze())
                influences.append(
                    calc_influence(multi_objective_model.loss,
                                   gpu_multi_objective_model,
                                   device_train_sample,
                                   test_hvps,
                                   diff_wrt=diff_wrt).sum().tolist())
        with open(rabbit.run_params.influences_path, 'w+') as fh:
            json.dump([[train_dl.dataset[idx][1], influence]
                       for idx, influence in enumerate(influences)], fh)