示例#1
0
def test(x):
    """Basic usage"""
    # instantiate a Mapper object
    start = time.time()
    filter = Projection(ax=2)
    cover = KeplerCover(nintervals=25,
                        overlap=0.4)
    cluster = Linkage(method='single',
                      metric='euclidean',
                      cutoff=FirstGap(0.05))
    mapper = lm.Mapper(data=x,
                       filter=filter,
                       cover=cover,
                       cluster=cluster)
    mapper.fit(skeleton_only=True).plot()
    print('Martino mapper: {0:.4f} sec'.format(time.time()-start))

    start = time.time()
    mapper = km.KeplerMapper(verbose=2)
    projected_data = mapper.fit_transform(x, projection=[2])
    graph = mapper.map(
        projected_data,
        x,
        nr_cubes=25,
        overlap_perc=0.4,
        clusterer=sklearn.cluster.AgglomerativeClustering(linkage='single'))

    print('Kepler mapper: {0:.4f} sec'.format(time.time()-start))

    return 0
示例#2
0
def test1(x):
    """Basic usage"""

    # instantiate a Mapper object
    """lmapper example usage"""
    filter = Eccentricity(exponent=2, metric="euclidean")
    cover = KeplerCover(nintervals=30, overlap=0.4)
    cluster = Linkage(method='single',
                      metric='euclidean',
                      cutoff=FirstGap(0.05))
    mapper = lm.Mapper(data=x, filter=filter, cover=cover, cluster=cluster)
    mapper.fit(skeleton_only=True)
    """change of clustering algorithm"""
    newcluster = Linkage(method='single',
                         metric='euclidean',
                         cutoff=FirstGap(0.1))
    mapper.set_params(cluster=newcluster)
    mapper.fit()
    mapper.plot()
    """change of clustering algorithm"""
    cluster = Linkage(method='single',
                      metric='euclidean',
                      cutoff=FirstGap(0.2))
    mapper.set_params(cluster=cluster)
    mapper.fit()
    """change of filter using a string argument"""
    mapper.set_params(filter='Projection')
    mapper.fit()
    """change of all parameters using a string argument"""
    mapper.set_params(filter='Projection',
                      cover='UniformCover',
                      cluster='Linkage')
    mapper.fit()
    return mapper
示例#3
0
def main():
    data = cat()
    filter = Projection(ax=0)
    cover = UniformCover(nintervals=15, overlap=0.4)
    cutoff = FirstGap(0.05)
    cluster = Linkage(method='single', metric="euclidean", cutoff=cutoff)
    mapper = lm.Mapper(data=data, filter=filter, cover=cover, cluster=cluster)
    mapper.fit()
    mapper.plot()
示例#4
0
def test(x):
    """Basic usage"""
    # instantiate a Mapper object
    start = time.time()
    filter = Eccentricity(nthreads=1)
    cover = KeplerCover(nintervals=25, overlap=0.4)
    cluster = Linkage(method='single',
                      metric='euclidean',
                      cutoff=FirstGap(0.05))
    mapper = lm.Mapper(data=x, filter=filter, cover=cover, cluster=cluster)
    mapper.fit(skeleton_only=True)
    print('1 thread: {0:.4f} sec'.format(time.time() - start))

    start = time.time()
    filter = Eccentricity(nthreads=8)
    cover = KeplerCover(nintervals=25, overlap=0.4)
    cluster = Linkage(method='single',
                      metric='euclidean',
                      cutoff=FirstGap(0.05))
    mapper = lm.Mapper(data=x, filter=filter, cover=cover, cluster=cluster)
    mapper.fit(skeleton_only=True)
    print('16 threads: {0:.4f} sec'.format(time.time() - start))

    return 0
def test(x, y):
    """Basic usage"""
    # instantiate a Mapper object
    filter = Eccentricity(exponent=2, metric='correlation')
    cover = BalancedCover(nintervals=4, overlap=0.49)
    cluster = Linkage(method='average',
                      metric='correlation',
                      cutoff=FirstGap(0.01))
    mapper = lm.Mapper(data=x, filter=filter, cover=cover, cluster=cluster)
    mapper.fit(skeleton_only=False)

    print("dimension = ", mapper.complex._dimension)

    predictor = mapp.BinaryClassifier(mapper=mapper,
                                      response_values=y,
                                      _lambda=0.015,
                                      a=0.5,
                                      beta=1)
    predictor.fit()
    # --------------------------
    # predictor.plot_majority_votes()
    return predictor.leave_one_out(x)
示例#6
0
def test(x, y):
    """Basic usage"""

    print(x.shape)
    # instantiate a Mapper object

    filter = Projection(ax=2)
    cover = UniformCover(nintervals=25, overlap=0.4)
    cluster = Linkage(method='single',
                      metric='euclidean',
                      cutoff=FirstGap(0.05))
    mapper = lm.Mapper(data=x, filter=filter, cover=cover, cluster=cluster)
    mapper.fit(skeleton_only=True)
    print("dimension = ", mapper.complex._dimension)

    predictor = mapp.BinaryClassifier(mapper=mapper,
                                      response_values=y,
                                      _lambda=0.0,
                                      a=0.5,
                                      beta=2)
    predictor.fit()  # .plot_majority_votes()

    return predictor.leave_one_out(x)