def download_hmf_magma(**args): label = str(args['label']) f = get_hmf(label) if f is None: return "No such form" F = WebNumberField(f['field_label']) F_hmf = get_hmf_field(f['field_label']) hecke_pol = f['hecke_polynomial'] hecke_eigs = f['hecke_eigenvalues'] AL_eigs = f['AL_eigenvalues'] outstr = 'P<x> := PolynomialRing(Rationals());\n' outstr += 'g := P!' + str(F.coeffs()) + ';\n' outstr += 'F<w> := NumberField(g);\n' outstr += 'ZF := Integers(F);\n\n' # outstr += 'ideals_str := [' + ','.join([st for st in F_hmf["ideals"]]) + '];\n' # outstr += 'ideals := [ideal<ZF | {F!x : x in I}> : I in ideals_str];\n\n' outstr += 'NN := ideal<ZF | {' + f["level_ideal"][1:-1] + '}>;\n\n' outstr += 'primesArray := [\n' + ','.join( [st for st in F_hmf["primes"]]).replace('],[', '],\n[') + '];\n' outstr += 'primes := [ideal<ZF | {F!x : x in I}> : I in primesArray];\n\n' if hecke_pol != 'x': outstr += 'heckePol := ' + hecke_pol + ';\n' outstr += 'K<e> := NumberField(heckePol);\n' else: outstr += 'heckePol := x;\nK := Rationals(); e := 1;\n' outstr += '\nheckeEigenvaluesArray := [' + ', '.join( [st for st in hecke_eigs]) + '];' outstr += '\nheckeEigenvalues := AssociativeArray();\n' outstr += 'for i := 1 to #heckeEigenvaluesArray do\n heckeEigenvalues[primes[i]] := heckeEigenvaluesArray[i];\nend for;\n\n' outstr += 'ALEigenvalues := AssociativeArray();\n' for s in AL_eigs: outstr += 'ALEigenvalues[ideal<ZF | {' + s[0][1:-1] + '}>] := ' + s[ 1] + ';\n' outstr += '\n// EXAMPLE:\n// pp := Factorization(2*ZF)[1][1];\n// heckeEigenvalues[pp];\n\n' outstr += '/* EXTRA CODE: recompute eigenform (warning, may take a few minutes or longer!):\n' outstr += 'M := HilbertCuspForms(F, NN);\n' outstr += 'S := NewSubspace(M);\n' outstr += '// SetVerbose("ModFrmHil", 1);\n' outstr += 'newspaces := NewformDecomposition(S);\n' outstr += 'newforms := [Eigenform(U) : U in newspaces];\n' outstr += 'ppind := 0;\n' outstr += 'while #newforms gt 1 do\n' outstr += ' pp := primes[ppind];\n' outstr += ' newforms := [f : f in newforms | HeckeEigenvalue(f,pp) eq heckeEigenvalues[pp]];\n' outstr += 'end while;\n' outstr += 'f := newforms[1];\n' outstr += '// [HeckeEigenvalue(f,pp) : pp in primes] eq heckeEigenvaluesArray;\n' outstr += '*/\n' return outstr
def download_hmf_magma(**args): label = str(args['label']) f = get_hmf(label) if f is None: return "No such form" F = WebNumberField(f['field_label']) F_hmf = get_hmf_field(f['field_label']) hecke_pol = f['hecke_polynomial'] hecke_eigs = f['hecke_eigenvalues'] AL_eigs = f['AL_eigenvalues'] outstr = 'P<x> := PolynomialRing(Rationals());\n' outstr += 'g := P!' + str(F.coeffs()) + ';\n' outstr += 'F<w> := NumberField(g);\n' outstr += 'ZF := Integers(F);\n\n' # outstr += 'ideals_str := [' + ','.join([st for st in F_hmf["ideals"]]) + '];\n' # outstr += 'ideals := [ideal<ZF | {F!x : x in I}> : I in ideals_str];\n\n' outstr += 'NN := ideal<ZF | {' + f["level_ideal"][1:-1] + '}>;\n\n' outstr += 'primesArray := [\n' + ','.join([st for st in F_hmf["primes"]]).replace('],[', '],\n[') + '];\n' outstr += 'primes := [ideal<ZF | {F!x : x in I}> : I in primesArray];\n\n' if hecke_pol != 'x': outstr += 'heckePol := ' + hecke_pol + ';\n' outstr += 'K<e> := NumberField(heckePol);\n' else: outstr += 'heckePol := x;\nK := Rationals(); e := 1;\n' outstr += '\nheckeEigenvaluesArray := [' + ', '.join([st for st in hecke_eigs]) + '];' outstr += '\nheckeEigenvalues := AssociativeArray();\n' outstr += 'for i := 1 to #heckeEigenvaluesArray do\n heckeEigenvalues[primes[i]] := heckeEigenvaluesArray[i];\nend for;\n\n' outstr += 'ALEigenvalues := AssociativeArray();\n' for s in AL_eigs: outstr += 'ALEigenvalues[ideal<ZF | {' + s[0][1:-1] + '}>] := ' + s[1] + ';\n' outstr += '\n// EXAMPLE:\n// pp := Factorization(2*ZF)[1][1];\n// heckeEigenvalues[pp];\n\n' outstr += '/* EXTRA CODE: recompute eigenform (warning, may take a few minutes or longer!):\n' outstr += 'M := HilbertCuspForms(F, NN);\n' outstr += 'S := NewSubspace(M);\n' outstr += '// SetVerbose("ModFrmHil", 1);\n' outstr += 'newspaces := NewformDecomposition(S);\n' outstr += 'newforms := [Eigenform(U) : U in newspaces];\n' outstr += 'ppind := 0;\n' outstr += 'while #newforms gt 1 do\n' outstr += ' pp := primes[ppind];\n' outstr += ' newforms := [f : f in newforms | HeckeEigenvalue(f,pp) eq heckeEigenvalues[pp]];\n' outstr += 'end while;\n' outstr += 'f := newforms[1];\n' outstr += '// [HeckeEigenvalue(f,pp) : pp in primes] eq heckeEigenvaluesArray;\n' outstr += '*/\n' return outstr
def download_hmf_sage(**args): label = str(args['label']) f = get_hmf(label) if f is None: return "No such form" hecke_pol = f['hecke_polynomial'] hecke_eigs = f['hecke_eigenvalues'] AL_eigs = f['AL_eigenvalues'] F = WebNumberField(f['field_label']) F_hmf = get_hmf_field(f['field_label']) outstr = 'P.<x> = PolynomialRing(QQ)\n' outstr += 'g = P(' + str(F.coeffs()) + ')\n' outstr += 'F.<w> = NumberField(g)\n' outstr += 'ZF = F.ring_of_integers()\n\n' outstr += 'NN = ZF.ideal(' + f["level_ideal"] + ')\n\n' outstr += 'primes_array = [\n' + ','.join( [st for st in F_hmf["primes"]]).replace('],[', '],\\\n[') + ']\n' outstr += 'primes = [ZF.ideal(I) for I in primes_array]\n\n' if hecke_pol != 'x': outstr += 'heckePol = ' + hecke_pol + '\n' outstr += 'K.<e> = NumberField(heckePol)\n' else: outstr += 'heckePol = x\nK = QQ\ne = 1\n' outstr += '\nhecke_eigenvalues_array = [' + ', '.join( [st for st in hecke_eigs]) + ']' outstr += '\nhecke_eigenvalues = {}\n' outstr += 'for i in range(len(hecke_eigenvalues_array)):\n hecke_eigenvalues[primes[i]] = hecke_eigenvalues_array[i]\n\n' outstr += 'AL_eigenvalues = {}\n' for s in AL_eigs: outstr += 'AL_eigenvalues[ZF.ideal(%s)] = %s\n' % (s[0], s[1]) outstr += '\n# EXAMPLE:\n# pp = ZF.ideal(2).factor()[0][0]\n# hecke_eigenvalues[pp]\n' return outstr
def download_hmf_sage(**args): label = str(args['label']) f = get_hmf(label) if f is None: return "No such form" hecke_pol = f['hecke_polynomial'] hecke_eigs = f['hecke_eigenvalues'] AL_eigs = f['AL_eigenvalues'] F = WebNumberField(f['field_label']) F_hmf = get_hmf_field(f['field_label']) outstr = 'P.<x> = PolynomialRing(QQ)\n' outstr += 'g = P(' + str(F.coeffs()) + ')\n' outstr += 'F.<w> = NumberField(g)\n' outstr += 'ZF = F.ring_of_integers()\n\n' outstr += 'NN = ZF.ideal(' + f["level_ideal"] + ')\n\n' outstr += 'primes_array = [\n' + ','.join([st for st in F_hmf["primes"]]).replace('],[', '],\\\n[') + ']\n' outstr += 'primes = [ZF.ideal(I) for I in primes_array]\n\n' if hecke_pol != 'x': outstr += 'heckePol = ' + hecke_pol + '\n' outstr += 'K.<e> = NumberField(heckePol)\n' else: outstr += 'heckePol = x\nK = QQ\ne = 1\n' outstr += '\nhecke_eigenvalues_array = [' + ', '.join([st for st in hecke_eigs]) + ']' outstr += '\nhecke_eigenvalues = {}\n' outstr += 'for i in range(len(hecke_eigenvalues_array)):\n hecke_eigenvalues[primes[i]] = hecke_eigenvalues_array[i]\n\n' outstr += 'AL_eigenvalues = {}\n' for s in AL_eigs: outstr += 'AL_eigenvalues[ZF.ideal(%s)] = %s\n' % (s[0],s[1]) outstr += '\n# EXAMPLE:\n# pp = ZF.ideal(2).factor()[0][0]\n# hecke_eigenvalues[pp]\n' return outstr
def render_field_webpage(args): data = None info = {} bread = [('Global Number Fields', url_for(".number_field_render_webpage"))] # This function should not be called unless label is set. label = clean_input(args['label']) nf = WebNumberField(label) data = {} if nf.is_null(): bread.append(('Search Results', ' ')) info['err'] = 'There is no field with label %s in the database' % label info['label'] = args['label_orig'] if 'label_orig' in args else args[ 'label'] return search_input_error(info, bread) info['wnf'] = nf data['degree'] = nf.degree() data['class_number'] = nf.class_number_latex() ram_primes = nf.ramified_primes() t = nf.galois_t() n = nf.degree() data['is_galois'] = nf.is_galois() data['is_abelian'] = nf.is_abelian() if nf.is_abelian(): conductor = nf.conductor() data['conductor'] = conductor dirichlet_chars = nf.dirichlet_group() if len(dirichlet_chars) > 0: data['dirichlet_group'] = [ '<a href = "%s">$\chi_{%s}(%s,·)$</a>' % (url_for('characters.render_Dirichletwebpage', modulus=data['conductor'], number=j), data['conductor'], j) for j in dirichlet_chars ] data['dirichlet_group'] = r'$\lbrace$' + ', '.join( data['dirichlet_group']) + r'$\rbrace$' if data['conductor'].is_prime() or data['conductor'] == 1: data['conductor'] = "\(%s\)" % str(data['conductor']) else: factored_conductor = factor_base_factor(data['conductor'], ram_primes) factored_conductor = factor_base_factorization_latex( factored_conductor) data['conductor'] = "\(%s=%s\)" % (str( data['conductor']), factored_conductor) data['galois_group'] = group_display_knowl(n, t) data['cclasses'] = cclasses_display_knowl(n, t) data['character_table'] = character_table_display_knowl(n, t) data['class_group'] = nf.class_group() data['class_group_invs'] = nf.class_group_invariants() data['signature'] = nf.signature() data['coefficients'] = nf.coeffs() nf.make_code_snippets() D = nf.disc() data['disc_factor'] = nf.disc_factored_latex() if D.abs().is_prime() or D == 1: data['discriminant'] = "\(%s\)" % str(D) else: data['discriminant'] = "\(%s=%s\)" % (str(D), data['disc_factor']) data['frob_data'], data['seeram'] = frobs(nf) # Bad prime information npr = len(ram_primes) ramified_algebras_data = nf.ramified_algebras_data() if isinstance(ramified_algebras_data, str): loc_alg = '' else: # [label, latex, e, f, c, gal] loc_alg = '' for j in range(npr): if ramified_algebras_data[j] is None: loc_alg += '<tr><td>%s<td colspan="7">Data not computed' % str( ram_primes[j]) else: mydat = ramified_algebras_data[j] p = ram_primes[j] loc_alg += '<tr><td rowspan="%d">$%s$</td>' % (len(mydat), str(p)) mm = mydat[0] myurl = url_for('local_fields.by_label', label=mm[0]) lab = mm[0] if mm[3] * mm[2] == 1: lab = r'$\Q_{%s}$' % str(p) loc_alg += '<td><a href="%s">%s</a><td>$%s$<td>$%d$<td>$%d$<td>$%d$<td>%s<td>$%s$' % ( myurl, lab, mm[1], mm[2], mm[3], mm[4], mm[5], show_slope_content(mm[8], mm[6], mm[7])) for mm in mydat[1:]: lab = mm[0] if mm[3] * mm[2] == 1: lab = r'$\Q_{%s}$' % str(p) loc_alg += '<tr><td><a href="%s">%s</a><td>$%s$<td>$%d$<td>$%d$<td>$%d$<td>%s<td>$%s$' % ( myurl, lab, mm[1], mm[2], mm[3], mm[4], mm[5], show_slope_content(mm[8], mm[6], mm[7])) loc_alg += '</tbody></table>' ram_primes = str(ram_primes)[1:-1] if ram_primes == '': ram_primes = r'\textrm{None}' data['phrase'] = group_phrase(n, t) zk = nf.zk() Ra = PolynomialRing(QQ, 'a') zk = [latex(Ra(x)) for x in zk] zk = ['$%s$' % x for x in zk] zk = ', '.join(zk) grh_label = '<small>(<a title="assuming GRH" knowl="nf.assuming_grh">assuming GRH</a>)</small>' if nf.used_grh( ) else '' # Short version for properties grh_lab = nf.short_grh_string() if 'Not' in str(data['class_number']): grh_lab = '' grh_label = '' pretty_label = field_pretty(label) if label != pretty_label: pretty_label = "%s: %s" % (label, pretty_label) info.update(data) if nf.degree() > 1: gpK = nf.gpK() rootof1coeff = gpK.nfrootsof1() rootofunityorder = int(rootof1coeff[1]) rootof1coeff = rootof1coeff[2] rootofunity = web_latex( Ra( str(pari("lift(%s)" % gpK.nfbasistoalg(rootof1coeff))).replace( 'x', 'a'))) rootofunity += ' (order $%d$)' % rootofunityorder else: rootofunity = web_latex(Ra('-1')) + ' (order $2$)' info.update({ 'label': pretty_label, 'label_raw': label, 'polynomial': web_latex_split_on_pm(nf.poly()), 'ram_primes': ram_primes, 'integral_basis': zk, 'regulator': web_latex(nf.regulator()), 'unit_rank': nf.unit_rank(), 'root_of_unity': rootofunity, 'fund_units': nf.units(), 'grh_label': grh_label, 'loc_alg': loc_alg }) bread.append(('%s' % info['label_raw'], ' ')) info['downloads_visible'] = True info['downloads'] = [('worksheet', '/')] info['friends'] = [] if nf.can_class_number(): # hide ones that take a lond time to compute on the fly # note that the first degree 4 number field missed the zero of the zeta function if abs(D**n) < 50000000: info['friends'].append(('L-function', "/L/NumberField/%s" % label)) info['friends'].append(('Galois group', "/GaloisGroup/%dT%d" % (n, t))) if 'dirichlet_group' in info: info['friends'].append(('Dirichlet character group', url_for("characters.dirichlet_group_table", modulus=int(conductor), char_number_list=','.join( [str(a) for a in dirichlet_chars]), poly=info['polynomial']))) resinfo = [] galois_closure = nf.galois_closure() if galois_closure[0] > 0: if len(galois_closure[1]) > 0: resinfo.append(('gc', galois_closure[1])) if len(galois_closure[2]) > 0: info['friends'].append(('Galois closure', url_for(".by_label", label=galois_closure[2][0]))) else: resinfo.append(('gc', [dnc])) sextic_twins = nf.sextic_twin() if sextic_twins[0] > 0: if len(sextic_twins[1]) > 0: resinfo.append(('sex', r' $\times$ '.join(sextic_twins[1]))) else: resinfo.append(('sex', dnc)) siblings = nf.siblings() # [degsib list, label list] # first is list of [deg, num expected, list of knowls] if len(siblings[0]) > 0: for sibdeg in siblings[0]: if len(sibdeg[2]) == 0: sibdeg[2] = dnc else: sibdeg[2] = ', '.join(sibdeg[2]) if len(sibdeg[2]) < sibdeg[1]: sibdeg[2] += ', some ' + dnc resinfo.append(('sib', siblings[0])) for lab in siblings[1]: if lab != '': labparts = lab.split('.') info['friends'].append(("Degree %s sibling" % labparts[0], url_for(".by_label", label=lab))) arith_equiv = nf.arith_equiv() if arith_equiv[0] > 0: if len(arith_equiv[1]) > 0: resinfo.append( ('ae', ', '.join(arith_equiv[1]), len(arith_equiv[1]))) for aelab in arith_equiv[2]: info['friends'].append(('Arithmetically equivalent sibling', url_for(".by_label", label=aelab))) else: resinfo.append(('ae', dnc, len(arith_equiv[1]))) info['resinfo'] = resinfo learnmore = learnmore_list() #if info['signature'] == [0,1]: # info['learnmore'].append(('Quadratic imaginary class groups', url_for(".render_class_group_data"))) # With Galois group labels, probably not needed here # info['learnmore'] = [('Global number field labels', # url_for(".render_labels_page")), ('Galois group # labels',url_for(".render_groups_page")), # (Completename,url_for(".render_discriminants_page"))] title = "Global Number Field %s" % info['label'] if npr == 1: primes = 'prime' else: primes = 'primes' properties2 = [('Label', label), ('Degree', '$%s$' % data['degree']), ('Signature', '$%s$' % data['signature']), ('Discriminant', '$%s$' % data['disc_factor']), ('Ramified ' + primes + '', '$%s$' % ram_primes), ('Class number', '%s %s' % (data['class_number'], grh_lab)), ('Class group', '%s %s' % (data['class_group_invs'], grh_lab)), ('Galois Group', group_display_short(data['degree'], t))] downloads = [] for lang in [["Magma", "magma"], ["SageMath", "sage"], ["Pari/GP", "gp"]]: downloads.append(('Download {} code'.format(lang[0]), url_for(".nf_code_download", nf=label, download_type=lang[1]))) from lmfdb.artin_representations.math_classes import NumberFieldGaloisGroup try: info["tim_number_field"] = NumberFieldGaloisGroup(nf._data['coeffs']) v = nf.factor_perm_repn(info["tim_number_field"]) def dopow(m): if m == 0: return '' if m == 1: return '*' return '*<sup>%d</sup>' % m info["mydecomp"] = [dopow(x) for x in v] except AttributeError: pass return render_template("number_field.html", properties2=properties2, credit=NF_credit, title=title, bread=bread, code=nf.code, friends=info.pop('friends'), downloads=downloads, learnmore=learnmore, info=info)
def render_field_webpage(args): data = None C = base.getDBConnection() info = {} bread = [('Global Number Fields', url_for(".number_field_render_webpage"))] # This function should not be called unless label is set. label = clean_input(args['label']) nf = WebNumberField(label) data = {} if nf.is_null(): bread.append(('Search results', ' ')) info['err'] = 'There is no field with label %s in the database' % label info['label'] = args['label_orig'] if 'label_orig' in args else args['label'] return search_input_error(info, bread) info['wnf'] = nf data['degree'] = nf.degree() data['class_number'] = nf.class_number() t = nf.galois_t() n = nf.degree() data['is_galois'] = nf.is_galois() data['is_abelian'] = nf.is_abelian() if nf.is_abelian(): conductor = nf.conductor() data['conductor'] = conductor dirichlet_chars = nf.dirichlet_group() if len(dirichlet_chars)>0: data['dirichlet_group'] = ['<a href = "%s">$\chi_{%s}(%s,·)$</a>' % (url_for('characters.render_Dirichletwebpage',modulus=data['conductor'], number=j), data['conductor'], j) for j in dirichlet_chars] data['dirichlet_group'] = r'$\lbrace$' + ', '.join(data['dirichlet_group']) + r'$\rbrace$' if data['conductor'].is_prime() or data['conductor'] == 1: data['conductor'] = "\(%s\)" % str(data['conductor']) else: data['conductor'] = "\(%s=%s\)" % (str(data['conductor']), latex(data['conductor'].factor())) data['galois_group'] = group_display_knowl(n, t, C) data['cclasses'] = cclasses_display_knowl(n, t, C) data['character_table'] = character_table_display_knowl(n, t, C) data['class_group'] = nf.class_group() data['class_group_invs'] = nf.class_group_invariants() data['signature'] = nf.signature() data['coefficients'] = nf.coeffs() nf.make_code_snippets() D = nf.disc() ram_primes = D.prime_factors() data['disc_factor'] = nf.disc_factored_latex() if D.abs().is_prime() or D == 1: data['discriminant'] = "\(%s\)" % str(D) else: data['discriminant'] = "\(%s=%s\)" % (str(D), data['disc_factor']) npr = len(ram_primes) ram_primes = str(ram_primes)[1:-1] if ram_primes == '': ram_primes = r'\textrm{None}' data['frob_data'], data['seeram'] = frobs(nf) data['phrase'] = group_phrase(n, t, C) zk = nf.zk() Ra = PolynomialRing(QQ, 'a') zk = [latex(Ra(x)) for x in zk] zk = ['$%s$' % x for x in zk] zk = ', '.join(zk) grh_label = '<small>(<a title="assuming GRH" knowl="nf.assuming_grh">assuming GRH</a>)</small>' if nf.used_grh() else '' # Short version for properties grh_lab = nf.short_grh_string() if 'Not' in str(data['class_number']): grh_lab='' grh_label='' pretty_label = field_pretty(label) if label != pretty_label: pretty_label = "%s: %s" % (label, pretty_label) info.update(data) if nf.degree() > 1: gpK = nf.gpK() rootof1coeff = gpK.nfrootsof1()[2] rootofunity = Ra(str(pari("lift(%s)" % gpK.nfbasistoalg(rootof1coeff))).replace('x','a')) else: rootofunity = Ra('-1') info.update({ 'label': pretty_label, 'label_raw': label, 'polynomial': web_latex_split_on_pm(nf.poly()), 'ram_primes': ram_primes, 'integral_basis': zk, 'regulator': web_latex(nf.regulator()), 'unit_rank': nf.unit_rank(), 'root_of_unity': web_latex(rootofunity), 'fund_units': nf.units(), 'grh_label': grh_label }) bread.append(('%s' % info['label_raw'], ' ')) info['downloads_visible'] = True info['downloads'] = [('worksheet', '/')] info['friends'] = [] if nf.can_class_number(): # hide ones that take a lond time to compute on the fly # note that the first degree 4 number field missed the zero of the zeta function if abs(D**n) < 50000000: info['friends'].append(('L-function', "/L/NumberField/%s" % label)) info['friends'].append(('Galois group', "/GaloisGroup/%dT%d" % (n, t))) if 'dirichlet_group' in info: info['friends'].append(('Dirichlet group', url_for("characters.dirichlet_group_table", modulus=int(conductor), char_number_list=','.join( [str(a) for a in dirichlet_chars]), poly=info['polynomial']))) info['learnmore'] = [('Global number field labels', url_for( ".render_labels_page")), (Completename, url_for(".render_discriminants_page")), ('How data was computed', url_for(".how_computed_page"))] if info['signature'] == [0,1]: info['learnmore'].append(('Quadratic imaginary class groups', url_for(".render_class_group_data"))) # With Galois group labels, probably not needed here # info['learnmore'] = [('Global number field labels', # url_for(".render_labels_page")), ('Galois group # labels',url_for(".render_groups_page")), # (Completename,url_for(".render_discriminants_page"))] title = "Global Number Field %s" % info['label'] if npr == 1: primes = 'prime' else: primes = 'primes' properties2 = [('Label', label), ('Degree', '%s' % data['degree']), ('Signature', '$%s$' % data['signature']), ('Discriminant', '$%s$' % data['disc_factor']), ('Ramified ' + primes + '', '$%s$' % ram_primes), ('Class number', '%s %s' % (data['class_number'], grh_lab)), ('Class group', '%s %s' % (data['class_group_invs'], grh_lab)), ('Galois Group', group_display_short(data['degree'], t, C)) ] from lmfdb.math_classes import NumberFieldGaloisGroup try: info["tim_number_field"] = NumberFieldGaloisGroup(nf._data['coeffs']) v = nf.factor_perm_repn(info["tim_number_field"]) def dopow(m): if m==0: return '' if m==1: return '*' return '*<sup>%d</sup>'% m info["mydecomp"] = [dopow(x) for x in v] except AttributeError: pass # del info['_id'] return render_template("number_field.html", properties2=properties2, credit=NF_credit, title=title, bread=bread, code=nf.code, friends=info.pop('friends'), learnmore=info.pop('learnmore'), info=info)
def render_field_webpage(args): data = None info = {} bread = [('Global Number Fields', url_for(".number_field_render_webpage"))] # This function should not be called unless label is set. label = clean_input(args['label']) nf = WebNumberField(label) data = {} if nf.is_null(): bread.append(('Search Results', ' ')) info['err'] = 'There is no field with label %s in the database' % label info['label'] = args['label_orig'] if 'label_orig' in args else args['label'] return search_input_error(info, bread) info['wnf'] = nf data['degree'] = nf.degree() data['class_number'] = nf.class_number_latex() ram_primes = nf.ramified_primes() t = nf.galois_t() n = nf.degree() data['is_galois'] = nf.is_galois() data['is_abelian'] = nf.is_abelian() if nf.is_abelian(): conductor = nf.conductor() data['conductor'] = conductor dirichlet_chars = nf.dirichlet_group() if len(dirichlet_chars)>0: data['dirichlet_group'] = ['<a href = "%s">$\chi_{%s}(%s,·)$</a>' % (url_for('characters.render_Dirichletwebpage',modulus=data['conductor'], number=j), data['conductor'], j) for j in dirichlet_chars] data['dirichlet_group'] = r'$\lbrace$' + ', '.join(data['dirichlet_group']) + r'$\rbrace$' if data['conductor'].is_prime() or data['conductor'] == 1: data['conductor'] = "\(%s\)" % str(data['conductor']) else: factored_conductor = factor_base_factor(data['conductor'], ram_primes) factored_conductor = factor_base_factorization_latex(factored_conductor) data['conductor'] = "\(%s=%s\)" % (str(data['conductor']), factored_conductor) data['galois_group'] = group_display_knowl(n, t) data['cclasses'] = cclasses_display_knowl(n, t) data['character_table'] = character_table_display_knowl(n, t) data['class_group'] = nf.class_group() data['class_group_invs'] = nf.class_group_invariants() data['signature'] = nf.signature() data['coefficients'] = nf.coeffs() nf.make_code_snippets() D = nf.disc() data['disc_factor'] = nf.disc_factored_latex() if D.abs().is_prime() or D == 1: data['discriminant'] = "\(%s\)" % str(D) else: data['discriminant'] = "\(%s=%s\)" % (str(D), data['disc_factor']) data['frob_data'], data['seeram'] = frobs(nf) # Bad prime information npr = len(ram_primes) ramified_algebras_data = nf.ramified_algebras_data() if isinstance(ramified_algebras_data,str): loc_alg = '' else: # [label, latex, e, f, c, gal] loc_alg = '' for j in range(npr): if ramified_algebras_data[j] is None: loc_alg += '<tr><td>%s<td colspan="7">Data not computed'%str(ram_primes[j]) else: mydat = ramified_algebras_data[j] p = ram_primes[j] loc_alg += '<tr><td rowspan="%d">$%s$</td>'%(len(mydat),str(p)) mm = mydat[0] myurl = url_for('local_fields.by_label', label=mm[0]) lab = mm[0] if mm[3]*mm[2]==1: lab = r'$\Q_{%s}$'%str(p) loc_alg += '<td><a href="%s">%s</a><td>$%s$<td>$%d$<td>$%d$<td>$%d$<td>%s<td>$%s$'%(myurl,lab,mm[1],mm[2],mm[3],mm[4],mm[5],show_slope_content(mm[8],mm[6],mm[7])) for mm in mydat[1:]: lab = mm[0] if mm[3]*mm[2]==1: lab = r'$\Q_{%s}$'%str(p) loc_alg += '<tr><td><a href="%s">%s</a><td>$%s$<td>$%d$<td>$%d$<td>$%d$<td>%s<td>$%s$'%(myurl,lab,mm[1],mm[2],mm[3],mm[4],mm[5],show_slope_content(mm[8],mm[6],mm[7])) loc_alg += '</tbody></table>' ram_primes = str(ram_primes)[1:-1] if ram_primes == '': ram_primes = r'\textrm{None}' data['phrase'] = group_phrase(n, t) zk = nf.zk() Ra = PolynomialRing(QQ, 'a') zk = [latex(Ra(x)) for x in zk] zk = ['$%s$' % x for x in zk] zk = ', '.join(zk) grh_label = '<small>(<a title="assuming GRH" knowl="nf.assuming_grh">assuming GRH</a>)</small>' if nf.used_grh() else '' # Short version for properties grh_lab = nf.short_grh_string() if 'Not' in str(data['class_number']): grh_lab='' grh_label='' pretty_label = field_pretty(label) if label != pretty_label: pretty_label = "%s: %s" % (label, pretty_label) info.update(data) if nf.degree() > 1: gpK = nf.gpK() rootof1coeff = gpK.nfrootsof1() rootofunityorder = int(rootof1coeff[1]) rootof1coeff = rootof1coeff[2] rootofunity = web_latex(Ra(str(pari("lift(%s)" % gpK.nfbasistoalg(rootof1coeff))).replace('x','a'))) rootofunity += ' (order $%d$)' % rootofunityorder else: rootofunity = web_latex(Ra('-1'))+ ' (order $2$)' info.update({ 'label': pretty_label, 'label_raw': label, 'polynomial': web_latex_split_on_pm(nf.poly()), 'ram_primes': ram_primes, 'integral_basis': zk, 'regulator': web_latex(nf.regulator()), 'unit_rank': nf.unit_rank(), 'root_of_unity': rootofunity, 'fund_units': nf.units(), 'grh_label': grh_label, 'loc_alg': loc_alg }) bread.append(('%s' % info['label_raw'], ' ')) info['downloads_visible'] = True info['downloads'] = [('worksheet', '/')] info['friends'] = [] if nf.can_class_number(): # hide ones that take a lond time to compute on the fly # note that the first degree 4 number field missed the zero of the zeta function if abs(D**n) < 50000000: info['friends'].append(('L-function', "/L/NumberField/%s" % label)) info['friends'].append(('Galois group', "/GaloisGroup/%dT%d" % (n, t))) if 'dirichlet_group' in info: info['friends'].append(('Dirichlet character group', url_for("characters.dirichlet_group_table", modulus=int(conductor), char_number_list=','.join( [str(a) for a in dirichlet_chars]), poly=info['polynomial']))) resinfo=[] galois_closure = nf.galois_closure() if galois_closure[0]>0: if len(galois_closure[1])>0: resinfo.append(('gc', galois_closure[1])) if len(galois_closure[2]) > 0: info['friends'].append(('Galois closure',url_for(".by_label", label=galois_closure[2][0]))) else: resinfo.append(('gc', [dnc])) sextic_twins = nf.sextic_twin() if sextic_twins[0]>0: if len(sextic_twins[1])>0: resinfo.append(('sex', r' $\times$ '.join(sextic_twins[1]))) else: resinfo.append(('sex', dnc)) siblings = nf.siblings() # [degsib list, label list] # first is list of [deg, num expected, list of knowls] if len(siblings[0])>0: for sibdeg in siblings[0]: if len(sibdeg[2]) ==0: sibdeg[2] = dnc else: sibdeg[2] = ', '.join(sibdeg[2]) if len(sibdeg[2])<sibdeg[1]: sibdeg[2] += ', some '+dnc resinfo.append(('sib', siblings[0])) for lab in siblings[1]: if lab != '': labparts = lab.split('.') info['friends'].append(("Degree %s sibling"%labparts[0] ,url_for(".by_label", label=lab))) arith_equiv = nf.arith_equiv() if arith_equiv[0]>0: if len(arith_equiv[1])>0: resinfo.append(('ae', ', '.join(arith_equiv[1]), len(arith_equiv[1]))) for aelab in arith_equiv[2]: info['friends'].append(('Arithmetically equivalent sibling',url_for(".by_label", label=aelab))) else: resinfo.append(('ae', dnc, len(arith_equiv[1]))) info['resinfo'] = resinfo learnmore = learnmore_list() #if info['signature'] == [0,1]: # info['learnmore'].append(('Quadratic imaginary class groups', url_for(".render_class_group_data"))) # With Galois group labels, probably not needed here # info['learnmore'] = [('Global number field labels', # url_for(".render_labels_page")), ('Galois group # labels',url_for(".render_groups_page")), # (Completename,url_for(".render_discriminants_page"))] title = "Global Number Field %s" % info['label'] if npr == 1: primes = 'prime' else: primes = 'primes' properties2 = [('Label', label), ('Degree', '$%s$' % data['degree']), ('Signature', '$%s$' % data['signature']), ('Discriminant', '$%s$' % data['disc_factor']), ('Ramified ' + primes + '', '$%s$' % ram_primes), ('Class number', '%s %s' % (data['class_number'], grh_lab)), ('Class group', '%s %s' % (data['class_group_invs'], grh_lab)), ('Galois Group', group_display_short(data['degree'], t)) ] downloads = [] for lang in [["Magma","magma"], ["SageMath","sage"], ["Pari/GP", "gp"]]: downloads.append(('Download {} code'.format(lang[0]), url_for(".nf_code_download", nf=label, download_type=lang[1]))) from lmfdb.artin_representations.math_classes import NumberFieldGaloisGroup try: info["tim_number_field"] = NumberFieldGaloisGroup(nf._data['coeffs']) v = nf.factor_perm_repn(info["tim_number_field"]) def dopow(m): if m==0: return '' if m==1: return '*' return '*<sup>%d</sup>'% m info["mydecomp"] = [dopow(x) for x in v] except AttributeError: pass return render_template("number_field.html", properties2=properties2, credit=NF_credit, title=title, bread=bread, code=nf.code, friends=info.pop('friends'), downloads=downloads, learnmore=learnmore, info=info)