import sqlite3 from lmtanalysis.FileUtil import getFilesToProcess from lmtanalysis.Animal import AnimalPool from lmtanalysis.Measure import oneHour if __name__ == '__main__': #ask the user for database to process files = getFilesToProcess() for file in files: # connect to database connection = sqlite3.connect(file) # create an animalPool, which basically contains your animals animalPool = AnimalPool() # load infos about the animals animalPool.loadAnimals(connection) # load all detection (positions) of all animals for the first hour animalPool.loadDetection(start=0, end=oneHour) # filter detection by animalSpeed (speed is in centimeters per second) animalPool.filterDetectionByInstantSpeed(30, 70) # plot and show trajectory animalPool.plotTrajectory( title="Trajectories filtered by speed (between 30 to 70 cm/s) ")
import sqlite3 from lmtanalysis.FileUtil import getFilesToProcess from lmtanalysis.Animal import AnimalPool from lmtanalysis.Measure import oneHour if __name__ == '__main__': #ask the user for database to process files = getFilesToProcess() for file in files: # connect to database connection = sqlite3.connect(file) # create an animalPool, which basically contains your animals animalPool = AnimalPool() # load infos about the animals animalPool.loadAnimals(connection) # load all detection (positions) of all animals for the first hour animalPool.loadDetection(start=0, end=oneHour) # filter detection by animalSpeed (speed is in centimeters per second) animalPool.filterDetectionByInstantSpeed(0, 2) # plot and show trajectory animalPool.plotTrajectory( title="Trajectories filtered by speed (max 2) ")
import sqlite3 from lmtanalysis.FileUtil import getFilesToProcess from lmtanalysis.Animal import AnimalPool from lmtanalysis.Measure import oneHour, oneMinute if __name__ == '__main__': #ask the user for database to process files = getFilesToProcess() for file in files: # connect to database connection = sqlite3.connect(file) # create an animalPool, which basically contains your animals animalPool = AnimalPool() # load infos about the animals animalPool.loadAnimals(connection) # load all detection (positions) of all animals for the first hour animalPool.loadDetection(start=0, end=10 * oneMinute) # filter detection by area (in cm from the top left of the cage) animalPool.filterDetectionByArea(0, 30, 25, 50) # plot and show trajectory animalPool.plotTrajectory(title="Trajectories filtered by area")
@author: Fab ''' import sqlite3 from lmtanalysis.FileUtil import getFilesToProcess from lmtanalysis.Animal import AnimalPool from lmtanalysis.Measure import oneHour if __name__ == '__main__': #ask the user for database to process files = getFilesToProcess() for file in files: # connect to database connection = sqlite3.connect(file) # create an animalPool, which basically contains your animals animalPool = AnimalPool() # load infos about the animals animalPool.loadAnimals(connection) # load all detection (positions) of all animals for the first hour animalPool.loadDetection(start=0, end=oneHour, lightLoad=True) # plot and show trajectory animalPool.plotTrajectory()
files = getFilesToProcess() for file in files: # connect to database connection = sqlite3.connect(file) # create an animalPool, which basically contains your animals animalPool = AnimalPool() # load infos about the animals animalPool.loadAnimals(connection) # load all detection (positions) of all animals for the first hour animalPool.loadDetection(start=0, end=10 * oneMinute) # filter detection by area (in cm from the top left of the cage) animalPool.filterDetectionByArea(0, 30, 25, 50) # loop over all animals in this database for animal in animalPool.getAnimalList(): # print RFID of animal print("Animal : ", animal.RFID) # distance traveled by animal (in cm): print("Distance traveled in area: (in centimeter): ", animal.getDistance()) animalPool.plotTrajectory(title="Trajectories filtered by area", scatter=True)