def evaluate_lenet5(learning_rate=0.085, n_epochs=2000, nkerns=[50, 50], batch_size=1, window_width=7, maxSentLength=60, emb_size=300, hidden_size=200, margin=0.5, L2_weight=0.00005, update_freq=10, norm_threshold=5.0): model_options = locals().copy() print "model options", model_options rootPath = '/mounts/data/proj/wenpeng/Dataset/MicrosoftParaphrase/tokenized_msr/' rng = numpy.random.RandomState(23455) datasets, vocab_size = load_msr_corpus(rootPath + 'vocab.txt', rootPath + 'tokenized_train.txt', rootPath + 'tokenized_test.txt', maxSentLength) mtPath = '/mounts/data/proj/wenpeng/Dataset/paraphraseMT/' mt_train, mt_test = load_mts(mtPath + 'concate_15mt_train.txt', mtPath + 'concate_15mt_test.txt') indices_train, trainY, trainLengths, normalized_train_length, trainLeftPad, trainRightPad = datasets[ 0] indices_train_l = indices_train[::2, :] indices_train_r = indices_train[1::2, :] trainLengths_l = trainLengths[::2] trainLengths_r = trainLengths[1::2] normalized_train_length_l = normalized_train_length[::2] normalized_train_length_r = normalized_train_length[1::2] trainLeftPad_l = trainLeftPad[::2] trainLeftPad_r = trainLeftPad[1::2] trainRightPad_l = trainRightPad[::2] trainRightPad_r = trainRightPad[1::2] indices_test, testY, testLengths, normalized_test_length, testLeftPad, testRightPad = datasets[ 1] indices_test_l = indices_test[::2, :] indices_test_r = indices_test[1::2, :] testLengths_l = testLengths[::2] testLengths_r = testLengths[1::2] normalized_test_length_l = normalized_test_length[::2] normalized_test_length_r = normalized_test_length[1::2] testLeftPad_l = testLeftPad[::2] testLeftPad_r = testLeftPad[1::2] testRightPad_l = testRightPad[::2] testRightPad_r = testRightPad[1::2] n_train_batches = indices_train_l.shape[0] / batch_size n_test_batches = indices_test_l.shape[0] / batch_size train_batch_start = list(numpy.arange(n_train_batches) * batch_size) test_batch_start = list(numpy.arange(n_test_batches) * batch_size) indices_train_l = theano.shared(numpy.asarray(indices_train_l, dtype=theano.config.floatX), borrow=True) indices_train_r = theano.shared(numpy.asarray(indices_train_r, dtype=theano.config.floatX), borrow=True) indices_test_l = theano.shared(numpy.asarray(indices_test_l, dtype=theano.config.floatX), borrow=True) indices_test_r = theano.shared(numpy.asarray(indices_test_r, dtype=theano.config.floatX), borrow=True) indices_train_l = T.cast(indices_train_l, 'int32') indices_train_r = T.cast(indices_train_r, 'int32') indices_test_l = T.cast(indices_test_l, 'int32') indices_test_r = T.cast(indices_test_r, 'int32') rand_values = random_value_normal((vocab_size + 1, emb_size), theano.config.floatX, numpy.random.RandomState(1234)) rand_values[0] = numpy.array(numpy.zeros(emb_size)) #rand_values[0]=numpy.array([1e-50]*emb_size) rand_values = load_word2vec_to_init(rand_values, rootPath + 'vocab_embs_300d.txt') embeddings = theano.shared(value=rand_values, borrow=True) cost_tmp = 0 error_sum = 0 # allocate symbolic variables for the data index = T.lscalar() x_index_l = T.imatrix( 'x_index_l') # now, x is the index matrix, must be integer x_index_r = T.imatrix('x_index_r') y = T.ivector('y') left_l = T.iscalar() right_l = T.iscalar() left_r = T.iscalar() right_r = T.iscalar() length_l = T.iscalar() length_r = T.iscalar() norm_length_l = T.dscalar() norm_length_r = T.dscalar() mts = T.dmatrix() #x=embeddings[x_index.flatten()].reshape(((batch_size*4),maxSentLength, emb_size)).transpose(0, 2, 1).flatten() ishape = (emb_size, maxSentLength) # this is the size of MNIST images filter_size = (emb_size, window_width) #poolsize1=(1, ishape[1]-filter_size[1]+1) #????????????????????????????? length_after_wideConv = ishape[1] + filter_size[1] - 1 ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # Reshape matrix of rasterized images of shape (batch_size,28*28) # to a 4D tensor, compatible with our LeNetConvPoolLayer #layer0_input = x.reshape(((batch_size*4), 1, ishape[0], ishape[1])) layer0_l_input = embeddings[x_index_l.flatten()].reshape( (batch_size, maxSentLength, emb_size)).transpose(0, 2, 1).dimshuffle(0, 'x', 1, 2) layer0_r_input = embeddings[x_index_r.flatten()].reshape( (batch_size, maxSentLength, emb_size)).transpose(0, 2, 1).dimshuffle(0, 'x', 1, 2) conv_W, conv_b = create_conv_para(rng, filter_shape=(nkerns[0], 1, filter_size[0], filter_size[1])) #layer0_output = debug_print(layer0.output, 'layer0.output') layer0_l = Conv_with_input_para(rng, input=layer0_l_input, image_shape=(batch_size, 1, ishape[0], ishape[1]), filter_shape=(nkerns[0], 1, filter_size[0], filter_size[1]), W=conv_W, b=conv_b) layer0_r = Conv_with_input_para(rng, input=layer0_r_input, image_shape=(batch_size, 1, ishape[0], ishape[1]), filter_shape=(nkerns[0], 1, filter_size[0], filter_size[1]), W=conv_W, b=conv_b) layer0_l_output = debug_print(layer0_l.output, 'layer0_l.output') layer0_r_output = debug_print(layer0_r.output, 'layer0_r.output') layer0_para = [conv_W, conv_b] layer1 = Average_Pooling(rng, input_l=layer0_l_output, input_r=layer0_r_output, kern=nkerns[0], left_l=left_l, right_l=right_l, left_r=left_r, right_r=right_r, length_l=length_l + filter_size[1] - 1, length_r=length_r + filter_size[1] - 1, dim=maxSentLength + filter_size[1] - 1, window_size=window_width, maxSentLength=maxSentLength) conv2_W, conv2_b = create_conv_para(rng, filter_shape=(nkerns[1], 1, nkerns[0], filter_size[1])) layer2_l = Conv_with_input_para(rng, input=layer1.output_tensor_l, image_shape=(batch_size, 1, nkerns[0], ishape[1]), filter_shape=(nkerns[1], 1, nkerns[0], filter_size[1]), W=conv2_W, b=conv2_b) layer2_r = Conv_with_input_para(rng, input=layer1.output_tensor_r, image_shape=(batch_size, 1, nkerns[0], ishape[1]), filter_shape=(nkerns[1], 1, nkerns[0], filter_size[1]), W=conv2_W, b=conv2_b) layer2_para = [conv2_W, conv2_b] layer3 = Average_Pooling_for_batch1(rng, input_l=layer2_l.output, input_r=layer2_r.output, kern=nkerns[1], left_l=left_l, right_l=right_l, left_r=left_r, right_r=right_r, length_l=length_l + filter_size[1] - 1, length_r=length_r + filter_size[1] - 1, dim=maxSentLength + filter_size[1] - 1) layer3_out = debug_print(layer3.output_simi, 'layer1_out') #layer2=HiddenLayer(rng, input=layer1_out, n_in=nkerns[0]*2, n_out=hidden_size, activation=T.tanh) sum_uni_l = T.sum(layer0_l_input, axis=3).reshape((1, emb_size)) #norm_uni_l=sum_uni_l/T.sqrt((sum_uni_l**2).sum()) sum_uni_r = T.sum(layer0_r_input, axis=3).reshape((1, emb_size)) #norm_uni_r=sum_uni_r/T.sqrt((sum_uni_r**2).sum()) ''' uni_cosine=cosine(sum_uni_l, sum_uni_r) linear=Linear(sum_uni_l, sum_uni_r) poly=Poly(sum_uni_l, sum_uni_r) sigmoid=Sigmoid(sum_uni_l, sum_uni_r) rbf=RBF(sum_uni_l, sum_uni_r) gesd=GESD(sum_uni_l, sum_uni_r) ''' eucli_1 = 1.0 / (1.0 + EUCLID(sum_uni_l, sum_uni_r)) #25.2% #eucli_1=EUCLID(sum_uni_l, sum_uni_r) len_l = norm_length_l.reshape((1, 1)) len_r = norm_length_r.reshape((1, 1)) #length_gap=T.log(1+(T.sqrt((len_l-len_r)**2))).reshape((1,1)) #length_gap=T.sqrt((len_l-len_r)**2) #layer3_input=mts layer4_input = T.concatenate( [mts, eucli_1, layer1.output_eucli, layer3_out, len_l, len_r], axis=1) #, layer2.output, layer1.output_cosine], axis=1) #layer3_input=T.concatenate([mts,eucli, uni_cosine, len_l, len_r, norm_uni_l-(norm_uni_l+norm_uni_r)/2], axis=1) #layer3=LogisticRegression(rng, input=layer3_input, n_in=11, n_out=2) layer4 = LogisticRegression(rng, input=layer4_input, n_in=15 + 3 + 2, n_out=2) #L2_reg =(layer3.W** 2).sum()+(layer2.W** 2).sum()+(layer1.W** 2).sum()+(conv_W** 2).sum() L2_reg = debug_print( (layer4.W**2).sum() + (conv2_W**2).sum() + (conv_W**2).sum(), 'L2_reg') #+(layer1.W** 2).sum() cost_this = debug_print(layer4.negative_log_likelihood(y), 'cost_this') #+L2_weight*L2_reg cost = debug_print( (cost_this + cost_tmp) / update_freq + L2_weight * L2_reg, 'cost') test_model = theano.function( [index], [layer4.errors(y), layer4.y_pred], givens={ x_index_l: indices_test_l[index:index + batch_size], x_index_r: indices_test_r[index:index + batch_size], y: testY[index:index + batch_size], left_l: testLeftPad_l[index], right_l: testRightPad_l[index], left_r: testLeftPad_r[index], right_r: testRightPad_r[index], length_l: testLengths_l[index], length_r: testLengths_r[index], norm_length_l: normalized_test_length_l[index], norm_length_r: normalized_test_length_r[index], mts: mt_test[index:index + batch_size] }, on_unused_input='ignore') #params = layer3.params + layer2.params + layer1.params+ [conv_W, conv_b] params = layer4.params + layer2_para + layer0_para # + layer1.params accumulator = [] for para_i in params: eps_p = numpy.zeros_like(para_i.get_value(borrow=True), dtype=theano.config.floatX) accumulator.append(theano.shared(eps_p, borrow=True)) # create a list of gradients for all model parameters grads = T.grad(cost, params) updates = [] for param_i, grad_i, acc_i in zip(params, grads, accumulator): grad_i = debug_print(grad_i, 'grad_i') #norm=T.sqrt((grad_i**2).sum()) #if T.lt(norm_threshold, norm): # print 'big norm' # grad_i=grad_i*(norm_threshold/norm) acc = acc_i + T.sqr(grad_i) updates.append( (param_i, param_i - learning_rate * grad_i / T.sqrt(acc))) #AdaGrad updates.append((acc_i, acc)) train_model = theano.function( [index], [cost, layer4.errors(y), layer4_input], updates=updates, givens={ x_index_l: indices_train_l[index:index + batch_size], x_index_r: indices_train_r[index:index + batch_size], y: trainY[index:index + batch_size], left_l: trainLeftPad_l[index], right_l: trainRightPad_l[index], left_r: trainLeftPad_r[index], right_r: trainRightPad_r[index], length_l: trainLengths_l[index], length_r: trainLengths_r[index], norm_length_l: normalized_train_length_l[index], norm_length_r: normalized_train_length_r[index], mts: mt_train[index:index + batch_size] }, on_unused_input='ignore') train_model_predict = theano.function( [index], [cost_this, layer4.errors(y)], givens={ x_index_l: indices_train_l[index:index + batch_size], x_index_r: indices_train_r[index:index + batch_size], y: trainY[index:index + batch_size], left_l: trainLeftPad_l[index], right_l: trainRightPad_l[index], left_r: trainLeftPad_r[index], right_r: trainRightPad_r[index], length_l: trainLengths_l[index], length_r: trainLengths_r[index], norm_length_l: normalized_train_length_l[index], norm_length_r: normalized_train_length_r[index], mts: mt_train[index:index + batch_size] }, on_unused_input='ignore') ############### # TRAIN MODEL # ############### print '... training' # early-stopping parameters patience = 500000000000000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = numpy.inf best_iter = 0 test_score = 0. start_time = time.clock() epoch = 0 done_looping = False while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 #for minibatch_index in xrange(n_train_batches): # each batch minibatch_index = 0 #shuffle(train_batch_start)#shuffle training data for batch_start in train_batch_start: # iter means how many batches have been runed, taking into loop iter = (epoch - 1) * n_train_batches + minibatch_index + 1 minibatch_index = minibatch_index + 1 #if epoch %2 ==0: # batch_start=batch_start+remain_train #time.sleep(0.5) if iter % update_freq != 0: cost_ij, error_ij = train_model_predict(batch_start) #print 'cost_ij: ', cost_ij cost_tmp += cost_ij error_sum += error_ij else: cost_average, error_ij, layer3_input = train_model(batch_start) #print 'training @ iter = '+str(iter)+' average cost: '+str(cost_average)+' sum error: '+str(error_sum)+'/'+str(update_freq) error_sum = 0 cost_tmp = 0 #reset for the next batch #print layer3_input #exit(0) #exit(0) if iter % n_train_batches == 0: print 'training @ iter = ' + str( iter) + ' average cost: ' + str( cost_average) + ' error: ' + str( error_sum) + '/' + str( update_freq) + ' error rate: ' + str( error_sum * 1.0 / update_freq) #if iter ==1: # exit(0) if iter % validation_frequency == 0: #write_file=open('log.txt', 'w') test_losses = [] for i in test_batch_start: test_loss, pred_y = test_model(i) #test_losses = [test_model(i) for i in test_batch_start] test_losses.append(test_loss) #write_file.write(str(pred_y[0])+'\n')#+'\t'+str(testY[i].eval())+ #write_file.close() test_score = numpy.mean(test_losses) print(( '\t\t\t\t\t\tepoch %i, minibatch %i/%i, test error of best ' 'model %f %%') % (epoch, minibatch_index, n_train_batches, test_score * 100.)) ''' #print 'validating & testing...' # compute zero-one loss on validation set validation_losses = [] for i in dev_batch_start: time.sleep(0.5) validation_losses.append(validate_model(i)) #validation_losses = [validate_model(i) for i in dev_batch_start] this_validation_loss = numpy.mean(validation_losses) print('\t\tepoch %i, minibatch %i/%i, validation error %f %%' % \ (epoch, minibatch_index , n_train_batches, \ this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [test_model(i) for i in test_batch_start] test_score = numpy.mean(test_losses) print(('\t\t\t\tepoch %i, minibatch %i/%i, test error of best ' 'model %f %%') % (epoch, minibatch_index, n_train_batches, test_score * 100.)) ''' if patience <= iter: done_looping = True break end_time = time.clock() print('Optimization complete.') print('Best validation score of %f %% obtained at iteration %i,'\ 'with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.))
def evaluate_lenet5(learning_rate=0.085, n_epochs=2000, nkerns=[1,1], batch_size=1, window_width=3, maxSentLength=60, emb_size=300, L2_weight=0.0005, update_freq=1, unifiedWidth_conv0=8, k_dy=3, ktop=3): model_options = locals().copy() print "model options", model_options rootPath='/mounts/data/proj/wenpeng/Dataset/MicrosoftParaphrase/tokenized_msr/'; rng = numpy.random.RandomState(23455) datasets, vocab_size=load_msr_corpus(rootPath+'vocab.txt', rootPath+'tokenized_train.txt', rootPath+'tokenized_test.txt', maxSentLength) mtPath='/mounts/data/proj/wenpeng/Dataset/paraphraseMT/' #mt_train, mt_test=load_mts(mtPath+'concate_15mt_train.txt', mtPath+'concate_15mt_test.txt') #wm_train, wm_test=load_wmf_wikiQA(rootPath+'train_number_matching_scores.txt', rootPath+'test_number_matching_scores.txt') indices_train, trainY, trainLengths, normalized_train_length, trainLeftPad, trainRightPad= datasets[0] indices_train_l=indices_train[::2,:] indices_train_r=indices_train[1::2,:] trainLengths_l=trainLengths[::2] trainLengths_r=trainLengths[1::2] normalized_train_length_l=normalized_train_length[::2] normalized_train_length_r=normalized_train_length[1::2] trainLeftPad_l=trainLeftPad[::2] trainLeftPad_r=trainLeftPad[1::2] trainRightPad_l=trainRightPad[::2] trainRightPad_r=trainRightPad[1::2] indices_test, testY, testLengths,normalized_test_length, testLeftPad, testRightPad= datasets[1] indices_test_l=indices_test[::2,:] indices_test_r=indices_test[1::2,:] testLengths_l=testLengths[::2] testLengths_r=testLengths[1::2] normalized_test_length_l=normalized_test_length[::2] normalized_test_length_r=normalized_test_length[1::2] testLeftPad_l=testLeftPad[::2] testLeftPad_r=testLeftPad[1::2] testRightPad_l=testRightPad[::2] testRightPad_r=testRightPad[1::2] n_train_batches=indices_train_l.shape[0]/batch_size n_test_batches=indices_test_l.shape[0]/batch_size train_batch_start=list(numpy.arange(n_train_batches)*batch_size) test_batch_start=list(numpy.arange(n_test_batches)*batch_size) indices_train_l=theano.shared(numpy.asarray(indices_train_l, dtype=theano.config.floatX), borrow=True) indices_train_r=theano.shared(numpy.asarray(indices_train_r, dtype=theano.config.floatX), borrow=True) indices_test_l=theano.shared(numpy.asarray(indices_test_l, dtype=theano.config.floatX), borrow=True) indices_test_r=theano.shared(numpy.asarray(indices_test_r, dtype=theano.config.floatX), borrow=True) indices_train_l=T.cast(indices_train_l, 'int64') indices_train_r=T.cast(indices_train_r, 'int64') indices_test_l=T.cast(indices_test_l, 'int64') indices_test_r=T.cast(indices_test_r, 'int64') rand_values=random_value_normal((vocab_size+1, emb_size), theano.config.floatX, numpy.random.RandomState(1234)) rand_values[0]=numpy.array(numpy.zeros(emb_size)) #rand_values[0]=numpy.array([1e-50]*emb_size) rand_values=load_word2vec_to_init(rand_values, rootPath+'vocab_embs_300d.txt') embeddings=theano.shared(value=rand_values, borrow=True) error_sum=0 # allocate symbolic variables for the data index = T.lscalar() x_index_l = T.lmatrix('x_index_l') # now, x is the index matrix, must be integer x_index_r = T.lmatrix('x_index_r') y = T.lvector('y') left_l=T.lscalar() right_l=T.lscalar() left_r=T.lscalar() right_r=T.lscalar() length_l=T.lscalar() length_r=T.lscalar() norm_length_l=T.dscalar() norm_length_r=T.dscalar() #mts=T.dmatrix() #wmf=T.dmatrix() cost_tmp=T.dscalar() #x=embeddings[x_index.flatten()].reshape(((batch_size*4),maxSentLength, emb_size)).transpose(0, 2, 1).flatten() ishape = (emb_size, maxSentLength) # this is the size of MNIST images filter_size=(emb_size,window_width) #poolsize1=(1, ishape[1]-filter_size[1]+1) #????????????????????????????? length_after_wideConv0=ishape[1]+filter_size[1]-1 poolsize1=(1, length_after_wideConv0) length_after_wideConv1=unifiedWidth_conv0+filter_size[1]-1 poolsize2=(1, length_after_wideConv1) ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # Reshape matrix of rasterized images of shape (batch_size,28*28) # to a 4D tensor, compatible with our LeNetConvPoolLayer #layer0_input = x.reshape(((batch_size*4), 1, ishape[0], ishape[1])) layer0_l_input = embeddings[x_index_l.flatten()].reshape((batch_size,maxSentLength, emb_size)).transpose(0, 2, 1).dimshuffle(0, 'x', 1, 2) layer0_r_input = embeddings[x_index_r.flatten()].reshape((batch_size,maxSentLength, emb_size)).transpose(0, 2, 1).dimshuffle(0, 'x', 1, 2) conv_W, conv_b=create_conv_para(rng, filter_shape=(nkerns[0], 1, filter_size[0], filter_size[1])) #layer0_output = debug_print(layer0.output, 'layer0.output') layer0_ll=Conv_Fold_DynamicK_PoolLayer_NAACL(rng, input=layer0_l_input, image_shape=(batch_size, 1, ishape[0], ishape[1]), filter_shape=(nkerns[0], 1, filter_size[0], filter_size[1]), poolsize=poolsize1, k=k_dy, unifiedWidth=unifiedWidth_conv0, left=left_l, right=right_l, W=conv_W, b=conv_b, firstLayer=True) layer0_rr=Conv_Fold_DynamicK_PoolLayer_NAACL(rng, input=layer0_r_input, image_shape=(batch_size, 1, ishape[0], ishape[1]), filter_shape=(nkerns[0], 1, filter_size[0], filter_size[1]), poolsize=poolsize1, k=k_dy, unifiedWidth=unifiedWidth_conv0, left=left_r, right=right_r, W=conv_W, b=conv_b, firstLayer=True) layer0_l_output=debug_print(layer0_ll.fold_output, 'layer0_l.output') layer0_r_output=debug_print(layer0_rr.fold_output, 'layer0_r.output') layer1=Average_Pooling_for_Top(rng, input_l=layer0_l_output, input_r=layer0_r_output, kern=ishape[0]/2, left_l=left_l, right_l=right_l, left_r=left_r, right_r=right_r, length_l=length_l+filter_size[1]-1, length_r=length_r+filter_size[1]-1, dim=maxSentLength+filter_size[1]-1) conv_W2, conv_b2=create_conv_para(rng, filter_shape=(1, 1, filter_size[0]/2, filter_size[1])) #layer0_output = debug_print(layer0.output, 'layer0.output') layer1_ll=Conv_Fold_DynamicK_PoolLayer_NAACL(rng, input=layer0_ll.output, image_shape=(batch_size, nkerns[0], ishape[0]/2, unifiedWidth_conv0), filter_shape=(nkerns[1], nkerns[0], filter_size[0]/2, filter_size[1]), poolsize=poolsize2, k=ktop, unifiedWidth=ktop, left=layer0_ll.leftPad, right=layer0_ll.rightPad, W=conv_W2, b=conv_b2, firstLayer=False) layer1_rr=Conv_Fold_DynamicK_PoolLayer_NAACL(rng, input=layer0_rr.output, image_shape=(batch_size, nkerns[0], ishape[0]/2, unifiedWidth_conv0), filter_shape=(nkerns[1], nkerns[0], filter_size[0]/2, filter_size[1]), poolsize=poolsize2, k=ktop, unifiedWidth=ktop, left=layer0_rr.leftPad, right=layer0_rr.rightPad, W=conv_W2, b=conv_b2, firstLayer=False) layer1_l_output=debug_print(layer1_ll.fold_output, 'layer1_l.output') layer1_r_output=debug_print(layer1_rr.fold_output, 'layer1_r.output') layer2=Average_Pooling_for_Top(rng, input_l=layer1_l_output, input_r=layer1_r_output, kern=ishape[0]/4, left_l=layer0_ll.leftPad, right_l=layer0_ll.rightPad, left_r=layer0_rr.leftPad, right_r=layer0_rr.rightPad, length_l=k_dy+filter_size[1]-1, length_r=k_dy+filter_size[1]-1, dim=unifiedWidth_conv0+filter_size[1]-1) #layer2=HiddenLayer(rng, input=layer1_out, n_in=nkerns[0]*2, n_out=hidden_size, activation=T.tanh) sum_uni_l=T.sum(layer0_l_input, axis=3).reshape((1, emb_size)) norm_uni_l=sum_uni_l/T.sqrt((sum_uni_l**2).sum()) sum_uni_r=T.sum(layer0_r_input, axis=3).reshape((1, emb_size)) norm_uni_r=sum_uni_r/T.sqrt((sum_uni_r**2).sum()) uni_cosine=cosine(sum_uni_l, sum_uni_r) ''' linear=Linear(sum_uni_l, sum_uni_r) poly=Poly(sum_uni_l, sum_uni_r) sigmoid=Sigmoid(sum_uni_l, sum_uni_r) rbf=RBF(sum_uni_l, sum_uni_r) gesd=GESD(sum_uni_l, sum_uni_r) ''' eucli_1=1.0/(1.0+EUCLID(sum_uni_l, sum_uni_r))#25.2% #eucli_1=EUCLID(sum_uni_l, sum_uni_r) len_l=norm_length_l.reshape((1,1)) len_r=norm_length_r.reshape((1,1)) ''' len_l=length_l.reshape((1,1)) len_r=length_r.reshape((1,1)) ''' #length_gap=T.log(1+(T.sqrt((len_l-len_r)**2))).reshape((1,1)) #length_gap=T.sqrt((len_l-len_r)**2) #layer3_input=mts layer3_input=T.concatenate([#mts, eucli_1, uni_cosine, #norm_uni_l, norm_uni_r,#uni_cosine,#norm_uni_l-(norm_uni_l+norm_uni_r)/2,#uni_cosine, # layer1.output_eucli_to_simi,layer1.output_cosine, layer1.output_attentions, #layer1.output_cosine,layer1.output_vector_l-(layer1.output_vector_l+layer1.output_vector_r)/2,#layer1.output_cosine, # #layer1.output_vector_l,layer1.output_vector_r, layer2.output_eucli_to_simi,layer2.output_cosine, layer2.output_attentions, #layer2.output_vector_l,layer2.output_vector_r, len_l, len_r #layer1.output_attentions, #wmf, ], axis=1)#, layer2.output, layer1.output_cosine], axis=1) #layer3_input=T.concatenate([mts,eucli, uni_cosine, len_l, len_r, norm_uni_l-(norm_uni_l+norm_uni_r)/2], axis=1) #layer3=LogisticRegression(rng, input=layer3_input, n_in=11, n_out=2) layer3=LogisticRegression(rng, input=layer3_input, n_in=(2)+(2+4*4)+(2+4*4)+2, n_out=2) #L2_reg =(layer3.W** 2).sum()+(layer2.W** 2).sum()+(layer1.W** 2).sum()+(conv_W** 2).sum() L2_reg =debug_print((layer3.W** 2).sum()+(conv_W** 2).sum()+(conv_W2**2).sum(), 'L2_reg')#+(layer1.W** 2).sum() cost_this =debug_print(layer3.negative_log_likelihood(y), 'cost_this')#+L2_weight*L2_reg cost=debug_print((cost_this+cost_tmp)/update_freq+L2_weight*L2_reg, 'cost') test_model = theano.function([index], [layer3.errors(y), layer3.y_pred, layer3_input, y], givens={ x_index_l: indices_test_l[index: index + batch_size], x_index_r: indices_test_r[index: index + batch_size], y: testY[index: index + batch_size], left_l: testLeftPad_l[index], right_l: testRightPad_l[index], left_r: testLeftPad_r[index], right_r: testRightPad_r[index], length_l: testLengths_l[index], length_r: testLengths_r[index], norm_length_l: normalized_test_length_l[index], norm_length_r: normalized_test_length_r[index] #mts: mt_test[index: index + batch_size], #wmf: wm_test[index: index + batch_size] }, on_unused_input='ignore') #params = layer3.params + layer2.params + layer1.params+ [conv_W, conv_b] params = layer3.params+ [conv_W]+[conv_W2]# + layer1.params accumulator=[] for para_i in params: eps_p=numpy.zeros_like(para_i.get_value(borrow=True),dtype=theano.config.floatX) accumulator.append(theano.shared(eps_p, borrow=True)) # create a list of gradients for all model parameters grads = T.grad(cost, params) updates = [] for param_i, grad_i, acc_i in zip(params, grads, accumulator): #grad_i=debug_print(grad_i,'grad_i') #norm=T.sqrt((grad_i**2).sum()) #if T.lt(norm_threshold, norm): # print 'big norm' # grad_i=grad_i*(norm_threshold/norm) acc = acc_i + T.sqr(grad_i) updates.append((param_i, param_i - learning_rate * grad_i / T.sqrt(acc))) #AdaGrad updates.append((acc_i, acc)) train_model = theano.function([index,cost_tmp], [cost,layer3.errors(y), layer3_input], updates=updates, givens={ x_index_l: indices_train_l[index: index + batch_size], x_index_r: indices_train_r[index: index + batch_size], y: trainY[index: index + batch_size], left_l: trainLeftPad_l[index], right_l: trainRightPad_l[index], left_r: trainLeftPad_r[index], right_r: trainRightPad_r[index], length_l: trainLengths_l[index], length_r: trainLengths_r[index], norm_length_l: normalized_train_length_l[index], norm_length_r: normalized_train_length_r[index] #mts: mt_train[index: index + batch_size], #wmf: wm_train[index: index + batch_size] }, on_unused_input='ignore') train_model_predict = theano.function([index], [cost_this,layer3.errors(y), layer3_input, y], givens={ x_index_l: indices_train_l[index: index + batch_size], x_index_r: indices_train_r[index: index + batch_size], y: trainY[index: index + batch_size], left_l: trainLeftPad_l[index], right_l: trainRightPad_l[index], left_r: trainLeftPad_r[index], right_r: trainRightPad_r[index], length_l: trainLengths_l[index], length_r: trainLengths_r[index], norm_length_l: normalized_train_length_l[index], norm_length_r: normalized_train_length_r[index] #mts: mt_train[index: index + batch_size], #wmf: wm_train[index: index + batch_size] }, on_unused_input='ignore') ############### # TRAIN MODEL # ############### print '... training' # early-stopping parameters patience = 500000000000000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = numpy.inf best_iter = 0 test_score = 0. start_time = time.clock() epoch = 0 done_looping = False max_acc=0.0 best_epoch=0 while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 #for minibatch_index in xrange(n_train_batches): # each batch minibatch_index=0 shuffle(train_batch_start)#shuffle training data cost_tmp=0.0 for batch_start in train_batch_start: # iter means how many batches have been runed, taking into loop iter = (epoch - 1) * n_train_batches + minibatch_index +1 minibatch_index=minibatch_index+1 #if epoch %2 ==0: # batch_start=batch_start+remain_train #time.sleep(0.5) if iter%update_freq != 0: cost_ij, error_ij, layer3_input, y=train_model_predict(batch_start) #print 'cost_ij: ', cost_ij cost_tmp+=cost_ij error_sum+=error_ij else: cost_average, error_ij, layer3_input= train_model(batch_start,cost_tmp) #print 'training @ iter = '+str(iter)+' average cost: '+str(cost_average)+' sum error: '+str(error_sum)+'/'+str(update_freq) error_sum=0 cost_tmp=0.0#reset for the next batch #print layer3_input #exit(0) #exit(0) if iter % n_train_batches == 0: print 'training @ iter = '+str(iter)+' average cost: '+str(cost_average)+' error: '+str(error_sum)+'/'+str(update_freq)+' error rate: '+str(error_sum*1.0/update_freq) #if iter ==1: # exit(0) if iter % validation_frequency == 0: #write_file=open('log.txt', 'w') test_losses=[] test_y=[] test_features=[] for i in test_batch_start: test_loss, pred_y, layer3_input, y=test_model(i) #test_losses = [test_model(i) for i in test_batch_start] test_losses.append(test_loss) test_y.append(y[0]) test_features.append(layer3_input[0]) #write_file.write(str(pred_y[0])+'\n')#+'\t'+str(testY[i].eval())+ #write_file.close() test_score = numpy.mean(test_losses) test_acc=1-test_score print(('\t\t\t\t\t\tepoch %i, minibatch %i/%i, test acc of best ' 'model %f %%') % (epoch, minibatch_index, n_train_batches, (1-test_score) * 100.)) #now, see the results of svm #write_feature=open('feature_check.txt', 'w') train_y=[] train_features=[] for batch_start in train_batch_start: cost_ij, error_ij, layer3_input, y=train_model_predict(batch_start) train_y.append(y[0]) train_features.append(layer3_input[0]) #write_feature.write(' '.join(map(str,layer3_input[0]))+'\n') #write_feature.close() clf = svm.SVC(kernel='linear')#OneVsRestClassifier(LinearSVC()) #linear 76.11%, poly 75.19, sigmoid 66.50, rbf 73.33 clf.fit(train_features, train_y) results=clf.predict(test_features) lr=linear_model.LogisticRegression().fit(train_features, train_y) results_lr=lr.predict(test_features) corr_count=0 corr_lr=0 test_size=len(test_y) for i in range(test_size): if results[i]==test_y[i]: corr_count+=1 if numpy.absolute(results_lr[i]-test_y[i])<0.5: corr_lr+=1 acc=corr_count*1.0/test_size acc_lr=corr_lr*1.0/test_size if acc > max_acc: max_acc=acc best_epoch=epoch if acc_lr> max_acc: max_acc=acc_lr best_epoch=epoch if test_acc> max_acc: max_acc=test_acc best_epoch=epoch print '\t\t\t\t\t\t\t\t\t\t\tsvm acc: ', acc, 'LR acc: ', acc_lr, ' max acc: ', max_acc , ' at epoch: ', best_epoch #exit(0) if patience <= iter: done_looping = True break end_time = time.clock() print('Optimization complete.') print('Best validation score of %f %% obtained at iteration %i,'\ 'with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.))
def evaluate_lenet5(learning_rate=0.085, n_epochs=2000, nkerns=[50, 50], batch_size=1, window_width=7, maxSentLength=60, emb_size=300, hidden_size=200, margin=0.5, L2_weight=0.00005, update_freq=10, norm_threshold=5.0): model_options = locals().copy() print "model options", model_options rootPath='/mounts/data/proj/wenpeng/Dataset/MicrosoftParaphrase/tokenized_msr/'; rng = numpy.random.RandomState(23455) datasets, vocab_size=load_msr_corpus(rootPath+'vocab.txt', rootPath+'tokenized_train.txt', rootPath+'tokenized_test.txt', maxSentLength) mtPath='/mounts/data/proj/wenpeng/Dataset/paraphraseMT/' mt_train, mt_test=load_mts(mtPath+'concate_15mt_train.txt', mtPath+'concate_15mt_test.txt') indices_train, trainY, trainLengths, normalized_train_length, trainLeftPad, trainRightPad= datasets[0] indices_train_l=indices_train[::2,:] indices_train_r=indices_train[1::2,:] trainLengths_l=trainLengths[::2] trainLengths_r=trainLengths[1::2] normalized_train_length_l=normalized_train_length[::2] normalized_train_length_r=normalized_train_length[1::2] trainLeftPad_l=trainLeftPad[::2] trainLeftPad_r=trainLeftPad[1::2] trainRightPad_l=trainRightPad[::2] trainRightPad_r=trainRightPad[1::2] indices_test, testY, testLengths,normalized_test_length, testLeftPad, testRightPad= datasets[1] indices_test_l=indices_test[::2,:] indices_test_r=indices_test[1::2,:] testLengths_l=testLengths[::2] testLengths_r=testLengths[1::2] normalized_test_length_l=normalized_test_length[::2] normalized_test_length_r=normalized_test_length[1::2] testLeftPad_l=testLeftPad[::2] testLeftPad_r=testLeftPad[1::2] testRightPad_l=testRightPad[::2] testRightPad_r=testRightPad[1::2] n_train_batches=indices_train_l.shape[0]/batch_size n_test_batches=indices_test_l.shape[0]/batch_size train_batch_start=list(numpy.arange(n_train_batches)*batch_size) test_batch_start=list(numpy.arange(n_test_batches)*batch_size) indices_train_l=theano.shared(numpy.asarray(indices_train_l, dtype=theano.config.floatX), borrow=True) indices_train_r=theano.shared(numpy.asarray(indices_train_r, dtype=theano.config.floatX), borrow=True) indices_test_l=theano.shared(numpy.asarray(indices_test_l, dtype=theano.config.floatX), borrow=True) indices_test_r=theano.shared(numpy.asarray(indices_test_r, dtype=theano.config.floatX), borrow=True) indices_train_l=T.cast(indices_train_l, 'int32') indices_train_r=T.cast(indices_train_r, 'int32') indices_test_l=T.cast(indices_test_l, 'int32') indices_test_r=T.cast(indices_test_r, 'int32') rand_values=random_value_normal((vocab_size+1, emb_size), theano.config.floatX, numpy.random.RandomState(1234)) rand_values[0]=numpy.array(numpy.zeros(emb_size)) #rand_values[0]=numpy.array([1e-50]*emb_size) rand_values=load_word2vec_to_init(rand_values, rootPath+'vocab_embs_300d.txt') embeddings=theano.shared(value=rand_values, borrow=True) cost_tmp=0 error_sum=0 # allocate symbolic variables for the data index = T.lscalar() x_index_l = T.imatrix('x_index_l') # now, x is the index matrix, must be integer x_index_r = T.imatrix('x_index_r') y = T.ivector('y') left_l=T.iscalar() right_l=T.iscalar() left_r=T.iscalar() right_r=T.iscalar() length_l=T.iscalar() length_r=T.iscalar() norm_length_l=T.dscalar() norm_length_r=T.dscalar() mts=T.dmatrix() #x=embeddings[x_index.flatten()].reshape(((batch_size*4),maxSentLength, emb_size)).transpose(0, 2, 1).flatten() ishape = (emb_size, maxSentLength) # this is the size of MNIST images filter_size=(emb_size,window_width) #poolsize1=(1, ishape[1]-filter_size[1]+1) #????????????????????????????? length_after_wideConv=ishape[1]+filter_size[1]-1 ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # Reshape matrix of rasterized images of shape (batch_size,28*28) # to a 4D tensor, compatible with our LeNetConvPoolLayer #layer0_input = x.reshape(((batch_size*4), 1, ishape[0], ishape[1])) layer0_l_input = embeddings[x_index_l.flatten()].reshape((batch_size,maxSentLength, emb_size)).transpose(0, 2, 1).dimshuffle(0, 'x', 1, 2) layer0_r_input = embeddings[x_index_r.flatten()].reshape((batch_size,maxSentLength, emb_size)).transpose(0, 2, 1).dimshuffle(0, 'x', 1, 2) conv_W, conv_b=create_conv_para(rng, filter_shape=(nkerns[0], 1, filter_size[0], filter_size[1])) #layer0_output = debug_print(layer0.output, 'layer0.output') layer0_l = Conv_with_input_para(rng, input=layer0_l_input, image_shape=(batch_size, 1, ishape[0], ishape[1]), filter_shape=(nkerns[0], 1, filter_size[0], filter_size[1]), W=conv_W, b=conv_b) layer0_r = Conv_with_input_para(rng, input=layer0_r_input, image_shape=(batch_size, 1, ishape[0], ishape[1]), filter_shape=(nkerns[0], 1, filter_size[0], filter_size[1]), W=conv_W, b=conv_b) layer0_l_output=debug_print(layer0_l.output, 'layer0_l.output') layer0_r_output=debug_print(layer0_r.output, 'layer0_r.output') layer0_para=[conv_W, conv_b] layer1=Average_Pooling(rng, input_l=layer0_l_output, input_r=layer0_r_output, kern=nkerns[0], left_l=left_l, right_l=right_l, left_r=left_r, right_r=right_r, length_l=length_l+filter_size[1]-1, length_r=length_r+filter_size[1]-1, dim=maxSentLength+filter_size[1]-1, window_size=window_width, maxSentLength=maxSentLength) conv2_W, conv2_b=create_conv_para(rng, filter_shape=(nkerns[1], 1, nkerns[0], filter_size[1])) layer2_l = Conv_with_input_para(rng, input=layer1.output_tensor_l, image_shape=(batch_size, 1, nkerns[0], ishape[1]), filter_shape=(nkerns[1], 1, nkerns[0], filter_size[1]), W=conv2_W, b=conv2_b) layer2_r = Conv_with_input_para(rng, input=layer1.output_tensor_r, image_shape=(batch_size, 1, nkerns[0], ishape[1]), filter_shape=(nkerns[1], 1, nkerns[0], filter_size[1]), W=conv2_W, b=conv2_b) layer2_para=[conv2_W, conv2_b] layer3=Average_Pooling_for_batch1(rng, input_l=layer2_l.output, input_r=layer2_r.output, kern=nkerns[1], left_l=left_l, right_l=right_l, left_r=left_r, right_r=right_r, length_l=length_l+filter_size[1]-1, length_r=length_r+filter_size[1]-1, dim=maxSentLength+filter_size[1]-1) layer3_out=debug_print(layer3.output_simi, 'layer1_out') #layer2=HiddenLayer(rng, input=layer1_out, n_in=nkerns[0]*2, n_out=hidden_size, activation=T.tanh) sum_uni_l=T.sum(layer0_l_input, axis=3).reshape((1, emb_size)) #norm_uni_l=sum_uni_l/T.sqrt((sum_uni_l**2).sum()) sum_uni_r=T.sum(layer0_r_input, axis=3).reshape((1, emb_size)) #norm_uni_r=sum_uni_r/T.sqrt((sum_uni_r**2).sum()) ''' uni_cosine=cosine(sum_uni_l, sum_uni_r) linear=Linear(sum_uni_l, sum_uni_r) poly=Poly(sum_uni_l, sum_uni_r) sigmoid=Sigmoid(sum_uni_l, sum_uni_r) rbf=RBF(sum_uni_l, sum_uni_r) gesd=GESD(sum_uni_l, sum_uni_r) ''' eucli_1=1.0/(1.0+EUCLID(sum_uni_l, sum_uni_r))#25.2% #eucli_1=EUCLID(sum_uni_l, sum_uni_r) len_l=norm_length_l.reshape((1,1)) len_r=norm_length_r.reshape((1,1)) #length_gap=T.log(1+(T.sqrt((len_l-len_r)**2))).reshape((1,1)) #length_gap=T.sqrt((len_l-len_r)**2) #layer3_input=mts layer4_input=T.concatenate([mts, eucli_1,layer1.output_eucli, layer3_out,len_l, len_r], axis=1)#, layer2.output, layer1.output_cosine], axis=1) #layer3_input=T.concatenate([mts,eucli, uni_cosine, len_l, len_r, norm_uni_l-(norm_uni_l+norm_uni_r)/2], axis=1) #layer3=LogisticRegression(rng, input=layer3_input, n_in=11, n_out=2) layer4=LogisticRegression(rng, input=layer4_input, n_in=15+3+2, n_out=2) #L2_reg =(layer3.W** 2).sum()+(layer2.W** 2).sum()+(layer1.W** 2).sum()+(conv_W** 2).sum() L2_reg =debug_print((layer4.W** 2).sum()+(conv2_W** 2).sum()+(conv_W** 2).sum(), 'L2_reg')#+(layer1.W** 2).sum() cost_this =debug_print(layer4.negative_log_likelihood(y), 'cost_this')#+L2_weight*L2_reg cost=debug_print((cost_this+cost_tmp)/update_freq+L2_weight*L2_reg, 'cost') test_model = theano.function([index], [layer4.errors(y), layer4.y_pred], givens={ x_index_l: indices_test_l[index: index + batch_size], x_index_r: indices_test_r[index: index + batch_size], y: testY[index: index + batch_size], left_l: testLeftPad_l[index], right_l: testRightPad_l[index], left_r: testLeftPad_r[index], right_r: testRightPad_r[index], length_l: testLengths_l[index], length_r: testLengths_r[index], norm_length_l: normalized_test_length_l[index], norm_length_r: normalized_test_length_r[index], mts: mt_test[index: index + batch_size]}, on_unused_input='ignore') #params = layer3.params + layer2.params + layer1.params+ [conv_W, conv_b] params = layer4.params+ layer2_para+ layer0_para# + layer1.params accumulator=[] for para_i in params: eps_p=numpy.zeros_like(para_i.get_value(borrow=True),dtype=theano.config.floatX) accumulator.append(theano.shared(eps_p, borrow=True)) # create a list of gradients for all model parameters grads = T.grad(cost, params) updates = [] for param_i, grad_i, acc_i in zip(params, grads, accumulator): grad_i=debug_print(grad_i,'grad_i') #norm=T.sqrt((grad_i**2).sum()) #if T.lt(norm_threshold, norm): # print 'big norm' # grad_i=grad_i*(norm_threshold/norm) acc = acc_i + T.sqr(grad_i) updates.append((param_i, param_i - learning_rate * grad_i / T.sqrt(acc))) #AdaGrad updates.append((acc_i, acc)) train_model = theano.function([index], [cost,layer4.errors(y), layer4_input], updates=updates, givens={ x_index_l: indices_train_l[index: index + batch_size], x_index_r: indices_train_r[index: index + batch_size], y: trainY[index: index + batch_size], left_l: trainLeftPad_l[index], right_l: trainRightPad_l[index], left_r: trainLeftPad_r[index], right_r: trainRightPad_r[index], length_l: trainLengths_l[index], length_r: trainLengths_r[index], norm_length_l: normalized_train_length_l[index], norm_length_r: normalized_train_length_r[index], mts: mt_train[index: index + batch_size]}, on_unused_input='ignore') train_model_predict = theano.function([index], [cost_this,layer4.errors(y)], givens={ x_index_l: indices_train_l[index: index + batch_size], x_index_r: indices_train_r[index: index + batch_size], y: trainY[index: index + batch_size], left_l: trainLeftPad_l[index], right_l: trainRightPad_l[index], left_r: trainLeftPad_r[index], right_r: trainRightPad_r[index], length_l: trainLengths_l[index], length_r: trainLengths_r[index], norm_length_l: normalized_train_length_l[index], norm_length_r: normalized_train_length_r[index], mts: mt_train[index: index + batch_size]}, on_unused_input='ignore') ############### # TRAIN MODEL # ############### print '... training' # early-stopping parameters patience = 500000000000000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_params = None best_validation_loss = numpy.inf best_iter = 0 test_score = 0. start_time = time.clock() epoch = 0 done_looping = False while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 #for minibatch_index in xrange(n_train_batches): # each batch minibatch_index=0 #shuffle(train_batch_start)#shuffle training data for batch_start in train_batch_start: # iter means how many batches have been runed, taking into loop iter = (epoch - 1) * n_train_batches + minibatch_index +1 minibatch_index=minibatch_index+1 #if epoch %2 ==0: # batch_start=batch_start+remain_train #time.sleep(0.5) if iter%update_freq != 0: cost_ij, error_ij=train_model_predict(batch_start) #print 'cost_ij: ', cost_ij cost_tmp+=cost_ij error_sum+=error_ij else: cost_average, error_ij, layer3_input= train_model(batch_start) #print 'training @ iter = '+str(iter)+' average cost: '+str(cost_average)+' sum error: '+str(error_sum)+'/'+str(update_freq) error_sum=0 cost_tmp=0#reset for the next batch #print layer3_input #exit(0) #exit(0) if iter % n_train_batches == 0: print 'training @ iter = '+str(iter)+' average cost: '+str(cost_average)+' error: '+str(error_sum)+'/'+str(update_freq)+' error rate: '+str(error_sum*1.0/update_freq) #if iter ==1: # exit(0) if iter % validation_frequency == 0: #write_file=open('log.txt', 'w') test_losses=[] for i in test_batch_start: test_loss, pred_y=test_model(i) #test_losses = [test_model(i) for i in test_batch_start] test_losses.append(test_loss) #write_file.write(str(pred_y[0])+'\n')#+'\t'+str(testY[i].eval())+ #write_file.close() test_score = numpy.mean(test_losses) print(('\t\t\t\t\t\tepoch %i, minibatch %i/%i, test error of best ' 'model %f %%') % (epoch, minibatch_index, n_train_batches, test_score * 100.)) ''' #print 'validating & testing...' # compute zero-one loss on validation set validation_losses = [] for i in dev_batch_start: time.sleep(0.5) validation_losses.append(validate_model(i)) #validation_losses = [validate_model(i) for i in dev_batch_start] this_validation_loss = numpy.mean(validation_losses) print('\t\tepoch %i, minibatch %i/%i, validation error %f %%' % \ (epoch, minibatch_index , n_train_batches, \ this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [test_model(i) for i in test_batch_start] test_score = numpy.mean(test_losses) print(('\t\t\t\tepoch %i, minibatch %i/%i, test error of best ' 'model %f %%') % (epoch, minibatch_index, n_train_batches, test_score * 100.)) ''' if patience <= iter: done_looping = True break end_time = time.clock() print('Optimization complete.') print('Best validation score of %f %% obtained at iteration %i,'\ 'with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.))