def face_predict(self, image):
        # 依然是根据后端系统确定维度顺序
        if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE,
                                                              IMAGE_SIZE):
            image = resize_image(
                image)  # 尺寸必须与训练集一致都应该是IMAGE_SIZE x IMAGE_SIZE
            image = image.reshape(
                (1, 3, IMAGE_SIZE, IMAGE_SIZE))  # 与模型训练不同,这次只是针对1张图片进行预测
        elif K.image_dim_ordering() == 'tf' and image.shape != (1, IMAGE_SIZE,
                                                                IMAGE_SIZE, 3):
            image = resize_image(image)
            image = image.reshape((1, IMAGE_SIZE, IMAGE_SIZE, 3))

            # 浮点并归一化
        image = image.astype('float32')
        image /= 255

        # 给出输入属于各个类别的概率,我们是二值类别,则该函数会给出输入图像属于0和1的概率各为多少
        result = self.model.predict_proba(image)
        print('result:', result)

        # 给出类别预测:0或者1
        result = self.model.predict_classes(image)

        # 返回类别预测结果
        return result[0]
示例#2
0
 def face_predict(self, image):    
     if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE):
         image = resize_image(image)                             
         image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE))    
     elif K.image_dim_ordering() == 'tf' and image.shape != (1, IMAGE_SIZE, IMAGE_SIZE, 3):
         image = resize_image(image)
         image = image.reshape((1, IMAGE_SIZE, IMAGE_SIZE, 3))                    
     image = image.astype('float32')
     image /= 255
     result = self.model.predict_proba(image)
     print('result:', result)
     result = self.model.predict_classes(image)        
     return result[0]
 def face_predict(self, image):    
     #Check the order of parameters
     if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE):
         image = resize_image(image)                             #change it size to the same as train_set
         image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE))       
     elif K.image_dim_ordering() == 'tf' and image.shape != (1, IMAGE_SIZE, IMAGE_SIZE, 3):
         image = resize_image(image)
         image = image.reshape((1, IMAGE_SIZE, IMAGE_SIZE, 3))                    
     
     image = image.astype('float32')
     image /= 255
     
     #ouput predict value
     result = self.model.predict_proba(image)
     print('result:', result)
     result = self.model.predict_classes(image)        
     return result[0]
示例#4
0
def predict(base64_file):
    if global_model is None:
        return 'error'

    image = ld.resize_image(base64_file, size, size)

    # print(image, file=sys.stdout)
    result = {
        'predictions': []
    }

    predictions = global_model.predict([image])

    for i, label in enumerate(label_array):
        result['predictions'].append({
            'label': label,
            'proba': predictions[0][i].item()
        })

    return json.dumps(result)
示例#5
0
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_2d, max_pool_2d
from tflearn.layers.estimator import regression
from tflearn.data_preprocessing import ImagePreprocessing
from tflearn.data_augmentation import ImageAugmentation
import numpy as np
import loadData as ld
import reseau as re

path = sys.argv[1]

fileName = path.split('/')[len(path.split('/'))-1]

folderPath = path[:len(path)-len(fileName)-1]

size = settings.size

ld.resize_image(folderPath, fileName, size, size)

extension = fileName.split('.')[len(fileName.split('.'))-1]

img = cv2.imread('./data/'+fileName[:len(fileName)-len(extension)]+'jpg').astype(np.float32, casting='unsafe')

model = re.getReseau()

model.load("dataviz-classifier.tfl")

prediction = model.predict([img])

print(prediction)