def test_writeImage(self):
        img_dims = (25600,25600)
        img_1 = np.ones(img_dims,'uint8') * 123
        img_2 = img_1.copy()
        le.writeImage(img_1, self.filename)
        read_img = np.zeros(img_dims,'uint8')
        le.getImage(read_img,self.filename)

        assert((read_img==img_2).all(), True )
def makePredictions(inputFile):

    X, image, blocklist = getPredictionData(inputFile)

    click.echo('Loading trained network data....')
    #Load stored data from network
    try:
        with open('net.pickle', 'rb') as f:
            net_pretrain = pickle.load(f)
        net_pretrain.max_epochs = 25  # Train the previous model over more epochs
    except IOError as e:
        print "No trained network is available. Use train command to train first. "

    click.echo('')
    click.echo('Making predictions....')
    #Make predictions
    y_pred = net_pretrain.predict(X)

    #Checking to see if predictions detect any sand dunes. Outputs the indice where a 1 is found.
    ones = 0
    zeroes = 0
    array_dunes = []
    for i in range(y_pred.shape[0]):
        if y_pred[i] == 1:
            ones+=1
            array_dunes.append(i)
        elif y_pred[i] == 0:
            zeroes += 1

    for x, y in enumerate(y_pred):
        if y == 1:
            blocklist[x][:] = 255

    click.echo('')
    click.echo('Dune blocks detected followed by negative blocks.')
    print ones, zeroes

    click.echo('')
    click.echo('Adding predictions to input image....')

    #Adding predictions to image data
    load_extension.writeImage(image, 'prediction.tif')
    click.echo('')
    click.echo('Writing image to directory....')
import Tkinter

root = Tkinter.Tk()



image_file = "PSP_009650_1755_RED"
train_file = image_file+"_dunes.tif"
image_file += ".tif"

rows, cols = load_extension.getDims(image_file)
ratio = max((cols)/root.winfo_screenwidth(),(rows)/root.winfo_screenheight())
size = (cols /ratio , rows / ratio)

sub_rows = rows/8
sub_cols = cols/4
print sub_rows, sub_cols


image = np.zeros((rows,cols),"uint8")
load_extension.getImage(image,image_file)

# im = Image.fromarray(image[:sub_rows, sub_cols:])
#im.thumbnail(size,Image.ANTIALIAS)
#im.show()
# ones = np.ones((sub_rows,sub_cols),'uint8')
# image = np.multiply(ones, image[:sub_rows, :sub_cols])

load_extension.writeImage( image[:sub_rows][sub_cols:], "test.tif")
load_extension.getImage(image,train_file)
load_extension.writeImage(image[:sub_rows][sub_cols:], "train.tif")
import load_extension
import numpy as np
import matplotlib.pyplot as plt
import Tkinter
import datetime
from PIL import Image

root = Tkinter.Tk()

start = datetime.datetime.now()

#assumes you have Ryans images in the same folder as this script
filename ="PSP_009650_1755_RED.tif"

#filename = "example.tif"
#filename = "training_image.tif"
training_file = "PSP_009650_1755_RED_dunes.tif"
rows,cols =  load_extension.getDims(filename)

train_image = np.zeros((rows,cols),'uint8')
image = np.zeros((rows,cols),'uint8')
load_extension.getImage(image,filename)
newfile = filename.split(".")[0] +"_flipped."+filename.split(".")[1]
start = datetime.datetime.now()
image = image[::-1]
ones = np.ones((rows,cols),'uint8')
image = np.multiply(ones, image)
load_extension.writeImage(image,newfile)
print datetime.datetime.now() -start
示例#5
0
import load_extension
import numpy as np
import matplotlib.pyplot as plt
import Tkinter
import datetime
from PIL import Image

root = Tkinter.Tk()

start = datetime.datetime.now()

#assumes you have Ryans images in the same folder as this script
filename = "PSP_009650_1755_RED.tif"

#filename = "example.tif"
#filename = "training_image.tif"
training_file = "PSP_009650_1755_RED_dunes.tif"
rows, cols = load_extension.getDims(filename)

train_image = np.zeros((rows, cols), 'uint8')
image = np.zeros((rows, cols), 'uint8')
load_extension.getImage(image, filename)
newfile = filename.split(".")[0] + "_flipped." + filename.split(".")[1]
start = datetime.datetime.now()
image = image[::-1]
ones = np.ones((rows, cols), 'uint8')
image = np.multiply(ones, image)
load_extension.writeImage(image, newfile)
print datetime.datetime.now() - start
示例#6
0
import numpy as np
from PIL import Image
import Tkinter

root = Tkinter.Tk()

image_file = "PSP_009650_1755_RED"
train_file = image_file + "_dunes.tif"
image_file += ".tif"

rows, cols = load_extension.getDims(image_file)
ratio = max((cols) / root.winfo_screenwidth(),
            (rows) / root.winfo_screenheight())
size = (cols / ratio, rows / ratio)

sub_rows = rows / 8
sub_cols = cols / 4
print sub_rows, sub_cols

image = np.zeros((rows, cols), "uint8")
load_extension.getImage(image, image_file)

# im = Image.fromarray(image[:sub_rows, sub_cols:])
#im.thumbnail(size,Image.ANTIALIAS)
#im.show()
# ones = np.ones((sub_rows,sub_cols),'uint8')
# image = np.multiply(ones, image[:sub_rows, :sub_cols])

load_extension.writeImage(image[:sub_rows][sub_cols:], "test.tif")
load_extension.getImage(image, train_file)
load_extension.writeImage(image[:sub_rows][sub_cols:], "train.tif")