f_width = load_features.f_width f_height = load_features.f_height samples = load_features.samples ######################### Load Features ######################### features, eddy, polarity = get_feature_label(2) # X: feature matrix y1: eddy vector y2: polarity vertor ################################################################### ########################## Classifiers ########################## # use the helper functions in the train_model.py file to train and validate and evaluate ### load trained classifieres clf = pickle.load(open('clf_core.pck', 'rb')) clf_polarity = pickle.load(open('clf_pol.pck', 'rb')) ###################### Load Vphase Snapshot ###################### for itnum in range(1): tic = time.clock()
def get_mask(): # provide your own mask fuction for the region of your interest # the function returns the location indecies and the correspondin lat/lon # of the land data points return cols, rows, mask_lon[cols], mask_lat[rows] f_width = load_features.f_width f_height = load_features.f_height samples = load_features.samples ######################### Load Features ######################### # X: feature matrix y1: eddy vector y2: polarity vertor features, eddy, polarity = get_feature_label(2) ################################################################### ########################## Classifiers ########################## # use the helper functions in the train_model.py file to train and validate and evaluate # load trained classifieres clf = pickle.load(open('clf_core.pck', 'rb')) clf_polarity = pickle.load(open('clf_pol.pck', 'rb')) ###################### Load Vphase Snapshot ###################### for itnum in range(1): tic = time.clock() vphase_path = 'provide file path' dataset_2pi = np.load("{0}.npy".format(sys.argv[1]))