def load_train_data(filepath, split=split, random_state=random_state): id, features_train, target_train = load_train(filepath) image_train = load_image(id) sss = StratifiedShuffleSplit(n_splits=1, train_size=split, random_state=random_state) train_i, val_i = next(sss.split(features_train, target_train)) features_val, val_img, val_target = features_train[val_i], image_train[ val_i], target_train[val_i] features_train, train_img, train_target = features_train[ train_i], image_train[train_i], target_train[train_i] return (features_train, train_img, train_target), (features_val, val_img, val_target)
def main(): args = parser.parse_args() learning_rate = args.learning_rate if args.data_load == 'True': images = np.load('images.npy') labels = np.load('labels.npy') elif args.data_load == 'False': dataset = load_image(args.image_dir, args.n_process, args.shape) images, labels = dataset np.save('images.npy', images) np.save('labels.npy', labels) else: print('Data load 인자 확인요망') return print('Dataset Shape :', images.shape) counter = 1 epoch = 1 counter_path = os.path.join(CHECKPOINT_DIR, args.run_name, 'counter.json') if os.path.exists(counter_path): with open(counter_path, 'r') as f: ce = json.load(f) counter = ce['counter'] epoch = ce['epoch'] model_path = os.path.join(CHECKPOINT_DIR, args.run_name, 'best_model.h5') mckpt = ModelCheckpoint(filepath=model_path, monitor='val_loss', verbose=1, save_best_only=True) input_image = Input(shape=args.shape + (1, )) c_ae = model(args, input_image) c_ae.compile(optimizer=Adam(lr=args.learning_rate), loss='binary_crossentropy') c_ae.summary() # images = images / 255. c_ae.fit(images, images, batch_size=args.batch_size, epochs=args.epochs, shuffle=True, validation_split=0.2, callbacks=[mckpt, SampleAndReconstruct(args)])
def load_test_data(filepath): id, test_features = load_test(filepath) test_images = load_image(id) return (id, test_features, test_images)
def main(): images = load_image(110) find_normal_vector_edges_like_paper(images[0])
import numpy as np import load_images def calculate_possible_values(image): missing_values = np.ma.masked_equal(0, image) print(missing_values) quit() if __name__ == '__main__': image = load_images.load_image(0) calculate_possible_values(image) quit()