def predict_cam():
    model_path = './'
    global_model = load_model.ImagenetModel(model_path + 'synset.txt', model_path + 'Inception-BN')
    while (True):
        predictions = global_model.predict_from_cam() 
        print(predictions)
示例#2
0
"""

import socket
import sys, os
import json
import logging
from timeit import default_timer as timer
import datetime
import load_model
import cv2
import csv

logging.basicConfig(
    format='%(asctime)s %(name)-20s %(levelname)-5s %(message)s')
model_path = '/greengrass-machine-learning/mxnet/squeezenet/'
global_model = load_model.ImagenetModel(model_path + 'synset.txt',
                                        model_path + 'squeezenet_v1.1')
STATS_DIRECTORY = '/home/pi/AWS/mountedStatistics'


# write local stats in a csv file
def write_local_stats(filename, stats_list):
    global STATS_DIRECTORY
    try:
        filepath = STATS_DIRECTORY.rstrip(os.sep) + os.sep + filename
        with open(filepath, 'w') as file:
            writer = csv.writer(file, delimiter=',')
            writer.writerows(stats_list)
    except:
        e = sys.exc_info()[0]
        print("Exception occured during writting Statistics File: %s" % e)
        #sys.exit(0)
# long-lived it will run forever when deployed to a Greengrass core.  The handler
# will NOT be invoked in our example since we are executing an infinite loop.

import sys
import time
import greengrasssdk
import platform
import os
from threading import Timer
import load_model

client = greengrasssdk.client('iot-data')

#model_path = '/greengrass-machine-learning/mxnet/squeezenet/'
model_path = './mxnet_models/squeezenetv1.1/'
global_model = load_model.ImagenetModel(model_path, 'MXNET', 'synset.txt',
                                        'squeezenet_v1.1')

#model_path = '/greengrass-machine-learning/tf/mobilenet/'
#model_path = './tf_models/mobilenetv1/'
#global_model = load_model.ImagenetModel(model_path, 'TF', 'labels.txt', 'graph.pb', 'MobilenetV1/Predictions/Reshape_1', 'CPU', [('input', (128, 128, 224, 224))])


# When deployed to a Greengrass core, this code will be executed immediately
# as a long-lived lambda function.  The code will enter the infinite while loop
# below.
def greengrass_object_classification_run():
    if global_model is not None:
        try:
            predictions = global_model.predict_from_cam()
            print predictions
            #publish predictions
import platform
import os
from threading import Timer
import load_model

client = greengrasssdk.client('iot-data')

#model_path = '/greengrass-machine-learning/mxnet/squeezenet/'
#model_path = './mxnet_models/squeezenetv1.1/'
#global_model = load_model.ImagenetModel(model_path, 'MXNET', 'synset.txt', 'squeezenet_v1.1')

#model_path = '/greengrass-machine-learning/tf/mobilenet/'
model_path = './tf_models/mobilenetv1/'
global_model = load_model.ImagenetModel(model_path, 'TF', 'labels.txt',
                                        'graph.pb',
                                        'MobilenetV1/Predictions/Reshape_1',
                                        'CPU',
                                        [('input', (128, 128, 224, 224))])


# When deployed to a Greengrass core, this code will be executed immediately
# as a long-lived lambda function.  The code will enter the infinite while loop
# below.
def greengrass_object_classification_run():
    if global_model is not None:
        try:
            predictions = global_model.predict_from_cam()
            print predictions
            #publish predictions
            client.publish(topic='hello/world',
                           payload='New Prediction: {}'.format(
logging.basicConfig(
    format='%(asctime)s %(name)-20s %(levelname)-5s %(message)s')
#model_path = '/greengrass-machine-learning/mxnet/squeezenet/'

# =============================================================================
# model_path = '.{}mxnet_models{}squeezenetv1.1{}'.format(os.sep, os.sep, os.sep)
# global_model = load_model.ImagenetModel(model_path + 'synset.txt', model_path + 'squeezenet_v1.1')
# =============================================================================

# =============================================================================
# model_path = '.{}mxnet_models{}caffenet{}'.format(os.sep, os.sep, os.sep)
# global_model = load_model.ImagenetModel(model_path + 'synset.txt', model_path + 'caffenet')
# =============================================================================

model_path = '.{}mxnet_models{}vgg16{}'.format(os.sep, os.sep, os.sep)
global_model = load_model.ImagenetModel(model_path + 'synset.txt',
                                        model_path + 'vgg16')

STATS_DIRECTORY = './'
image_folderPath = '/home/anirban/Pictures/First2001'


# write local stats in a csv file
def write_local_stats(filename, stats_list):
    global STATS_DIRECTORY
    try:
        filepath = STATS_DIRECTORY.rstrip(os.sep) + os.sep + filename
        with open(filepath, 'w') as file:
            writer = csv.writer(file, delimiter=',')
            writer.writerows(stats_list)
    except:
        e = sys.exc_info()[0]
# will NOT be invoked in our example since the we are executing an infinite loop.
#
# This can be found on the AWS IoT Console.

import greengrasssdk
import platform
from threading import Timer
import time
import load_model
import sys

# Creating a greengrass core sdk client
client = greengrasssdk.client('iot-data')

model_path = '/greengrass-machine-learning/mxnet/inception_bn/'
global_model = load_model.ImagenetModel(model_path + 'synset.txt',
                                        model_path + 'Inception-BN')


def greengrass_long_run():
    if global_model is not None:
        try:
            predictions = global_model.predict_from_cam()
            print predictions
            #publish predictions
            client.publish(topic='hello/world',
                           payload='New Prediction: {}'.format(
                               str(predictions)))
        except:
            e = sys.exc_info()[0]
            print("Exception occured during prediction: %s" % e)
示例#7
0
import cameratest
import load_model

print('inside main module')
print('main module name' + __name__)
#cameratest.TakePicture()
#cameratest.UploadToS3()
#source_face, matches = cameratest.compare_faces(cameratest.BUCKET, cameratest.KEY_SOURCE, cameratest.BUCKET, cameratest.KEY_TARGET)
#print("Source Face ({Confidence}%)".format(**source_face))

#for match in matches:
#        print ("Target Face ({Confidence}%)".format(**match['Face']))
#        print ("  Similarity : {}%".format(match['Similarity']))

objtest = load_model.ImagenetModel('synset.txt', 'squeezenet_v1.1')
objtest.predict_from_file('cat.jpg')