modelweights = {'flux': flux} ##load llhmodel and assoc. MC if catalog == 'WHSP_Blazars' or mhubertest: import load_mstacking if mese: if sirin: llhmodel = load_mstacking.load_7yr_mese_nospline_79() else: llhmodel = load_mstacking.load_7yr_mese() else: if sirin: llhmodel = load_mstacking.load_7yr_nospline_79() else: llhmodel = load_mstacking.load_7yr() MC = load_mstacking.monte_carlo(llhmodel) else: import load_PS7yr as datascript if years == 7: if mese: llhmodel = datascript.load7yr_mese(energy=True, mode='all', sirin=sirin) MC = datascript.loadMC7yr_mese(sirin=sirin) #The following catalogs used sirins IC79 and no pull correct of 1.1774 for the first 4yrs of data. elif catalog == '4yr_Starburst' or catalog == 'SNR_noPWN' or catalog == 'SNR_cloud' or catalog == 'SNR_PWN': if years == 3: llhmodel = datascript.load3yr(energy=True, mode='all', sirin=True, nopull=True)
########## mhuber's 7yr sample ######### llh40 = load_mstacking.ic40() llh59 = load_mstacking.ic59() llh79 = load_mstacking.ic79b() llh86I = load_mstacking.ic86_I() llh86II = load_mstacking.ic86_2012() llh = [llh40, llh59, llh79, llh86I, llh86II] exp = [] for l in llh: exp.append(l.exp) ##Also have to load all at once in order to get the mc in a good format. Probably can do this separately, but this way ensures I use the exact right MC. llh7yr = load_mstacking.load_7yr() mc = load_mstacking.monte_carlo(llh7yr) ##Now I have exp and mc for all 7 yrs. plot. The framework for plotting is already set up, so let's just make sure the info is in a manner it's used to. bins = 80 ### Energy ### fig_energyhist = plt.figure(figsize=(w, .75 * w)) ax = plt.gca() labels = ['IC40', 'IC59', 'IC79', 'IC86I', 'IC86II-IV'] colors = ['purple', 'green', 'blue', 'red', 'orange'] for i, l, c in zip(exp, labels, colors): h = histlite.hist(10**(i['logE']), bins=bins, log=True, range=(10, 1e7)) histlite.plot1d(ax, h, histtype='step', label=l, color=c)