def test_sparse_alpha_knn_graph(): data = datasets.make_swiss_roll()[0] k = 5 a = 0.45 thresh = 0.01 bandwidth_scale = 1.3 pdx = squareform(pdist(data, metric="euclidean")) knn_dist = np.partition(pdx, k, axis=1)[:, :k] epsilon = np.max(knn_dist, axis=1) * bandwidth_scale pdx = (pdx.T / epsilon).T K = np.exp(-1 * pdx**a) K = K + K.T W = np.divide(K, 2) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph( data, n_pca=None, # n_pca, decay=a, knn=k - 1, thresh=thresh, bandwidth_scale=bandwidth_scale, random_state=42, use_pygsp=True, ) assert np.abs(G.W - G2.W).max() < thresh assert G.N == G2.N assert isinstance(G2, graphtools.graphs.kNNGraph)
def test_knn_graph(): k = 3 n_pca = 20 pca = PCA(n_pca, svd_solver='randomized', random_state=42).fit(data) data_nu = pca.transform(data) pdx = squareform(pdist(data_nu, metric='euclidean')) knn_dist = np.partition(pdx, k, axis=1)[:, :k] epsilon = np.max(knn_dist, axis=1) K = np.empty_like(pdx) for i in range(len(pdx)): K[i, pdx[i, :] <= epsilon[i]] = 1 K[i, pdx[i, :] > epsilon[i]] = 0 K = K + K.T W = np.divide(K, 2) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph(data, n_pca=n_pca, decay=None, knn=k, random_state=42, use_pygsp=True) assert(G.N == G2.N) assert(np.all(G.d == G2.d)) assert((G.W != G2.W).nnz == 0) assert((G2.W != G.W).sum() == 0) assert(isinstance(G2, graphtools.graphs.kNNGraph))
def test_mnn_graph_matrix_gamma(): X, sample_idx = generate_swiss_roll() bs = 0.8 gamma = np.array([ [1, bs], # 0 [bs, 1] ]) # 3 k = 10 a = 20 metric = 'euclidean' beta = 0 samples = np.unique(sample_idx) K = np.zeros((len(X), len(X))) K[:] = np.nan K = pd.DataFrame(K) for si in samples: X_i = X[sample_idx == si] # get observations in sample i for sj in samples: X_j = X[sample_idx == sj] # get observation in sample j pdx_ij = cdist(X_i, X_j, metric=metric) # pairwise distances kdx_ij = np.sort(pdx_ij, axis=1) # get kNN e_ij = kdx_ij[:, k] # dist to kNN pdxe_ij = pdx_ij / e_ij[:, np.newaxis] # normalize k_ij = np.exp(-1 * (pdxe_ij**a)) # apply alpha-decaying kernel if si == sj: K.iloc[sample_idx == si, sample_idx == sj] = k_ij * \ (1 - beta) # fill out values in K for NN on diagonal else: # fill out values in K for NN on diagonal K.iloc[sample_idx == si, sample_idx == sj] = k_ij K = np.array(K) matrix_gamma = pd.DataFrame(np.zeros((len(sample_idx), len(sample_idx)))) for ix, si in enumerate(set(sample_idx)): for jx, sj in enumerate(set(sample_idx)): matrix_gamma.iloc[sample_idx == si, sample_idx == sj] = gamma[ix, jx] W = np.array((matrix_gamma * np.minimum(K, K.T)) + ((1 - matrix_gamma) * np.maximum(K, K.T))) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = graphtools.Graph(X, knn=k + 1, decay=a, beta=1 - beta, kernel_symm='gamma', gamma=gamma, distance=metric, sample_idx=sample_idx, thresh=0, use_pygsp=True) assert G.N == G2.N assert np.all(G.d == G2.d) assert (G.W != G2.W).nnz == 0 assert (G2.W != G.W).sum() == 0 assert isinstance(G2, graphtools.graphs.MNNGraph)
def test_knn_graph_sparse(): k = 3 n_pca = 20 pca = TruncatedSVD(n_pca, random_state=42).fit(data) data_nu = pca.transform(data) pdx = squareform(pdist(data_nu, metric="euclidean")) knn_dist = np.partition(pdx, k, axis=1)[:, :k] epsilon = np.max(knn_dist, axis=1) K = np.empty_like(pdx) for i in range(len(pdx)): K[i, pdx[i, :] <= epsilon[i]] = 1 K[i, pdx[i, :] > epsilon[i]] = 0 K = K + K.T W = np.divide(K, 2) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph( sp.coo_matrix(data), n_pca=n_pca, decay=None, knn=k - 1, random_state=42, use_pygsp=True, ) assert G.N == G2.N np.testing.assert_allclose(G2.W.toarray(), G.W.toarray()) assert isinstance(G2, graphtools.graphs.kNNGraph)
def test_knn_graph_anisotropy(): k = 3 a = 13 n_pca = 20 anisotropy = 0.9 thresh = 1e-4 data_small = data[np.random.choice(len(data), len(data) // 2, replace=False)] pca = PCA(n_pca, svd_solver="randomized", random_state=42).fit(data_small) data_small_nu = pca.transform(data_small) pdx = squareform(pdist(data_small_nu, metric="euclidean")) knn_dist = np.partition(pdx, k, axis=1)[:, :k] epsilon = np.max(knn_dist, axis=1) weighted_pdx = (pdx.T / epsilon).T K = np.exp(-1 * weighted_pdx ** a) K[K < thresh] = 0 K = K + K.T K = np.divide(K, 2) d = K.sum(1) W = K / (np.outer(d, d) ** anisotropy) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph( data_small, n_pca=n_pca, thresh=thresh, decay=a, knn=k - 1, random_state=42, use_pygsp=True, anisotropy=anisotropy, ) assert isinstance(G2, graphtools.graphs.kNNGraph) assert G.N == G2.N np.testing.assert_allclose(G.dw, G2.dw, atol=1e-14, rtol=1e-14) np.testing.assert_allclose((G2.W - G.W).data, 0, atol=1e-14, rtol=1e-14)
def test_knn_graph_multiplication_symm(): k = 3 n_pca = 20 pca = PCA(n_pca, svd_solver="randomized", random_state=42).fit(data) data_nu = pca.transform(data) pdx = squareform(pdist(data_nu, metric="euclidean")) knn_dist = np.partition(pdx, k, axis=1)[:, :k] epsilon = np.max(knn_dist, axis=1) K = np.empty_like(pdx) for i in range(len(pdx)): K[i, pdx[i, :] <= epsilon[i]] = 1 K[i, pdx[i, :] > epsilon[i]] = 0 W = K * K.T np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph( data, n_pca=n_pca, decay=None, knn=k - 1, random_state=42, use_pygsp=True, kernel_symm="*", ) assert G.N == G2.N np.testing.assert_equal(G.dw, G2.dw) assert (G.W - G2.W).nnz == 0 assert (G2.W - G.W).sum() == 0 assert isinstance(G2, graphtools.graphs.kNNGraph)
def test_knn_graph_fixed_bandwidth(): k = None decay = 5 bandwidth = 10 bandwidth_scale = 1.3 n_pca = 20 thresh = 1e-4 pca = PCA(n_pca, svd_solver="randomized", random_state=42).fit(data) data_nu = pca.transform(data) pdx = squareform(pdist(data_nu, metric="euclidean")) K = np.exp(-1 * np.power(pdx / (bandwidth * bandwidth_scale), decay)) K[K < thresh] = 0 K = K + K.T W = np.divide(K, 2) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph( data, n_pca=n_pca, decay=decay, bandwidth=bandwidth, bandwidth_scale=bandwidth_scale, knn=k, random_state=42, thresh=thresh, search_multiplier=2, use_pygsp=True, ) assert isinstance(G2, graphtools.graphs.kNNGraph) np.testing.assert_array_equal(G.N, G2.N) np.testing.assert_array_equal(G.d, G2.d) np.testing.assert_allclose((G.W - G2.W).data, np.zeros_like((G.W - G2.W).data), atol=1e-14) bandwidth = np.random.gamma(20, 0.5, len(data)) K = np.exp(-1 * (pdx.T / (bandwidth * bandwidth_scale)).T**decay) K[K < thresh] = 0 K = K + K.T W = np.divide(K, 2) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph( data, n_pca=n_pca, decay=decay, bandwidth=bandwidth, bandwidth_scale=bandwidth_scale, knn=k, random_state=42, thresh=thresh, use_pygsp=True, ) assert isinstance(G2, graphtools.graphs.kNNGraph) np.testing.assert_array_equal(G.N, G2.N) np.testing.assert_allclose(G.dw, G2.dw, atol=1e-14) np.testing.assert_allclose((G.W - G2.W).data, np.zeros_like((G.W - G2.W).data), atol=1e-14)
def test_shortest_path_constant(): data_small = data[np.random.choice(len(data), len(data) // 4, replace=False)] G = build_graph(data_small, knn=5, decay=None) P = graph_shortest_path(G.K) # sklearn returns 0 if no path exists P[np.where(P == 0)] = np.inf # diagonal should actually be zero np.fill_diagonal(P, 0) np.testing.assert_equal(P, G.shortest_path(distance="constant"))
def test_exact_graph_callable_bandwidth(): decay = 2 knn = 5 def bandwidth(x): return 2 n_pca = 20 thresh = 1e-4 pca = PCA(n_pca, svd_solver="randomized", random_state=42).fit(data) data_nu = pca.transform(data) pdx = squareform(pdist(data_nu, metric="euclidean")) K = np.exp(-1 * (pdx / bandwidth(pdx))**decay) K[K < thresh] = 0 K = K + K.T W = np.divide(K, 2) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph( data, n_pca=n_pca, knn=knn - 1, decay=decay, bandwidth=bandwidth, random_state=42, thresh=thresh, use_pygsp=True, ) assert isinstance(G2, graphtools.graphs.TraditionalGraph) assert G.N == G2.N np.testing.assert_equal(G.dw, G2.dw) assert (G2.W != G.W).sum() == 0 assert (G.W != G2.W).nnz == 0 def bandwidth(x): return np.percentile(x, 10, axis=1) K = np.exp(-1 * (pdx / bandwidth(pdx))**decay) K[K < thresh] = 0 K = K + K.T W = np.divide(K, 2) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph( data, n_pca=n_pca, knn=knn - 1, decay=decay, bandwidth=bandwidth, random_state=42, thresh=thresh, use_pygsp=True, ) assert isinstance(G2, graphtools.graphs.TraditionalGraph) assert G.N == G2.N np.testing.assert_allclose(G.dw, G2.dw) np.testing.assert_allclose((G2.W - G.W).data, 0, atol=1e-14)
def test_shortest_path_data(): data_small = data[np.random.choice(len(data), len(data) // 4, replace=False)] G = build_graph(data_small, knn=5, decay=None) D = squareform(pdist(G.data_nu)) * np.where(G.K.toarray() > 0, 1, 0) P = graph_shortest_path(D) # sklearn returns 0 if no path exists P[np.where(P == 0)] = np.inf # diagonal should actually be zero np.fill_diagonal(P, 0) np.testing.assert_allclose(P, G.shortest_path(distance="data")) np.testing.assert_allclose(P, G.shortest_path())
def test_shortest_path_affinity(): data_small = data[np.random.choice(len(data), len(data) // 4, replace=False)] G = build_graph(data_small, knn=5, decay=15) D = -1 * np.where(G.K != 0, np.log(np.where(G.K != 0, G.K, np.nan)), 0) P = graph_shortest_path(D) # sklearn returns 0 if no path exists P[np.where(P == 0)] = np.inf # diagonal should actually be zero np.fill_diagonal(P, 0) np.testing.assert_allclose(P, G.shortest_path(distance="affinity")) np.testing.assert_allclose(P, G.shortest_path())
def test_exact_graph_fixed_bandwidth(): decay = 2 knn = None bandwidth = 2 n_pca = 20 pca = PCA(n_pca, svd_solver="randomized", random_state=42).fit(data) data_nu = pca.transform(data) pdx = squareform(pdist(data_nu, metric="euclidean")) K = np.exp(-1 * (pdx / bandwidth)**decay) K = K + K.T W = np.divide(K, 2) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph( data, n_pca=n_pca, graphtype="exact", knn=knn, decay=decay, bandwidth=bandwidth, random_state=42, thresh=0, use_pygsp=True, ) assert isinstance(G2, graphtools.graphs.TraditionalGraph) assert G.N == G2.N np.testing.assert_allclose(G.dw, G2.dw) np.testing.assert_allclose((G2.W - G.W).data, 0, atol=1e-14) bandwidth = np.random.gamma(5, 0.5, len(data)) K = np.exp(-1 * (pdx.T / bandwidth).T**decay) K = K + K.T W = np.divide(K, 2) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph( data, n_pca=n_pca, graphtype="exact", knn=knn, decay=decay, bandwidth=bandwidth, random_state=42, thresh=0, use_pygsp=True, ) assert isinstance(G2, graphtools.graphs.TraditionalGraph) assert G.N == G2.N np.testing.assert_allclose(G.dw, G2.dw) np.testing.assert_allclose((G2.W - G.W).data, 0, atol=1e-14)
def test_truncated_exact_graph_no_pca(): k = 3 a = 13 n_pca = None thresh = 1e-4 data_small = data[np.random.choice(len(data), len(data) // 10, replace=False)] pdx = squareform(pdist(data_small, metric="euclidean")) knn_dist = np.partition(pdx, k, axis=1)[:, :k] epsilon = np.max(knn_dist, axis=1) weighted_pdx = (pdx.T / epsilon).T K = np.exp(-1 * weighted_pdx**a) K[K < thresh] = 0 W = K + K.T W = np.divide(W, 2) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph( data_small, thresh=thresh, graphtype="exact", n_pca=n_pca, decay=a, knn=k - 1, random_state=42, use_pygsp=True, ) assert G.N == G2.N np.testing.assert_equal(G.dw, G2.dw) assert (G.W != G2.W).nnz == 0 assert (G2.W != G.W).sum() == 0 assert isinstance(G2, graphtools.graphs.TraditionalGraph) G2 = build_graph( sp.csr_matrix(data_small), thresh=thresh, graphtype="exact", n_pca=n_pca, decay=a, knn=k - 1, random_state=42, use_pygsp=True, ) assert G.N == G2.N np.testing.assert_equal(G.dw, G2.dw) assert (G.W != G2.W).nnz == 0 assert (G2.W != G.W).sum() == 0 assert isinstance(G2, graphtools.graphs.TraditionalGraph)
def test_knnmax(): data = datasets.make_swiss_roll()[0] k = 5 k_max = 10 a = 0.45 thresh = 0 with warnings.catch_warnings(): warnings.filterwarnings("ignore", "K should be symmetric", RuntimeWarning) G = build_graph( data, n_pca=None, # n_pca, decay=a, knn=k - 1, knn_max=k_max - 1, thresh=0, random_state=42, kernel_symm=None, ) assert np.all((G.K > 0).sum(axis=1) == k_max) pdx = squareform(pdist(data, metric="euclidean")) knn_dist = np.partition(pdx, k, axis=1)[:, :k] knn_max_dist = np.max(np.partition(pdx, k_max, axis=1)[:, :k_max], axis=1) epsilon = np.max(knn_dist, axis=1) pdx_scale = (pdx.T / epsilon).T K = np.where(pdx <= knn_max_dist[:, None], np.exp(-1 * pdx_scale**a), 0) K = K + K.T W = np.divide(K, 2) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph( data, n_pca=None, # n_pca, decay=a, knn=k - 1, knn_max=k_max - 1, thresh=0, random_state=42, use_pygsp=True, ) assert isinstance(G2, graphtools.graphs.kNNGraph) assert G.N == G2.N assert np.all(G.dw == G2.dw) assert (G.W - G2.W).nnz == 0
def test_knn_graph(): k = 3 n_pca = 20 pca = PCA(n_pca, svd_solver="randomized", random_state=42).fit(data) data_nu = pca.transform(data) pdx = squareform(pdist(data_nu, metric="euclidean")) knn_dist = np.partition(pdx, k, axis=1)[:, :k] epsilon = np.max(knn_dist, axis=1) K = np.empty_like(pdx) for i in range(len(pdx)): K[i, pdx[i, :] <= epsilon[i]] = 1 K[i, pdx[i, :] > epsilon[i]] = 0 K = K + K.T W = np.divide(K, 2) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph(data, n_pca=n_pca, decay=None, knn=k - 1, random_state=42, use_pygsp=True) assert G.N == G2.N np.testing.assert_equal(G.dw, G2.dw) assert (G.W - G2.W).nnz == 0 assert (G2.W - G.W).sum() == 0 assert isinstance(G2, graphtools.graphs.kNNGraph) K2 = G2.build_kernel_to_data(G2.data_nu, knn=k) K2 = (K2 + K2.T) / 2 assert (G2.K - K2).nnz == 0 assert (G2.build_kernel_to_data( G2.data_nu, knn=data.shape[0]).nnz == data.shape[0] * data.shape[0]) with assert_warns_message( UserWarning, "Cannot set knn ({}) to be greater than " "n_samples ({}). Setting knn={}".format(data.shape[0] + 1, data.shape[0], data.shape[0]), ): G2.build_kernel_to_data( Y=G2.data_nu, knn=data.shape[0] + 1, )
def test_exact_graph_anisotropy(): k = 3 a = 13 n_pca = 20 anisotropy = 0.9 data_small = data[np.random.choice(len(data), len(data) // 2, replace=False)] pca = PCA(n_pca, svd_solver="randomized", random_state=42).fit(data_small) data_small_nu = pca.transform(data_small) pdx = squareform(pdist(data_small_nu, metric="euclidean")) knn_dist = np.partition(pdx, k, axis=1)[:, :k] epsilon = np.max(knn_dist, axis=1) weighted_pdx = (pdx.T / epsilon).T K = np.exp(-1 * weighted_pdx**a) K = K + K.T K = np.divide(K, 2) d = K.sum(1) W = K / (np.outer(d, d)**anisotropy) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph( data_small, thresh=0, n_pca=n_pca, decay=a, knn=k - 1, random_state=42, use_pygsp=True, anisotropy=anisotropy, ) assert isinstance(G2, graphtools.graphs.TraditionalGraph) assert G.N == G2.N np.testing.assert_equal(G.dw, G2.dw) assert (G2.W != G.W).sum() == 0 assert (G.W != G2.W).nnz == 0 with assert_raises_message(ValueError, "Expected 0 <= anisotropy <= 1. Got -1"): build_graph( data_small, thresh=0, n_pca=n_pca, decay=a, knn=k - 1, random_state=42, use_pygsp=True, anisotropy=-1, ) with assert_raises_message(ValueError, "Expected 0 <= anisotropy <= 1. Got 2"): build_graph( data_small, thresh=0, n_pca=n_pca, decay=a, knn=k - 1, random_state=42, use_pygsp=True, anisotropy=2, ) with assert_raises_message(ValueError, "Expected 0 <= anisotropy <= 1. Got invalid"): build_graph( data_small, thresh=0, n_pca=n_pca, decay=a, knn=k - 1, random_state=42, use_pygsp=True, anisotropy="invalid", )
def test_exact_graph(): k = 3 a = 13 n_pca = 20 bandwidth_scale = 1.3 data_small = data[np.random.choice(len(data), len(data) // 2, replace=False)] pca = PCA(n_pca, svd_solver="randomized", random_state=42).fit(data_small) data_small_nu = pca.transform(data_small) pdx = squareform(pdist(data_small_nu, metric="euclidean")) knn_dist = np.partition(pdx, k, axis=1)[:, :k] epsilon = np.max(knn_dist, axis=1) * bandwidth_scale weighted_pdx = (pdx.T / epsilon).T K = np.exp(-1 * weighted_pdx**a) W = K + K.T W = np.divide(W, 2) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph( data_small, thresh=0, n_pca=n_pca, decay=a, knn=k - 1, random_state=42, bandwidth_scale=bandwidth_scale, use_pygsp=True, ) assert G.N == G2.N np.testing.assert_equal(G.dw, G2.dw) assert (G.W != G2.W).nnz == 0 assert (G2.W != G.W).sum() == 0 assert isinstance(G2, graphtools.graphs.TraditionalGraph) G2 = build_graph( pdx, n_pca=None, precomputed="distance", bandwidth_scale=bandwidth_scale, decay=a, knn=k - 1, random_state=42, use_pygsp=True, ) assert G.N == G2.N np.testing.assert_equal(G.dw, G2.dw) assert (G.W != G2.W).nnz == 0 assert (G2.W != G.W).sum() == 0 assert isinstance(G2, graphtools.graphs.TraditionalGraph) G2 = build_graph( sp.coo_matrix(K), n_pca=None, precomputed="affinity", random_state=42, use_pygsp=True, ) assert G.N == G2.N np.testing.assert_equal(G.dw, G2.dw) assert (G.W != G2.W).nnz == 0 assert (G2.W != G.W).sum() == 0 assert isinstance(G2, graphtools.graphs.TraditionalGraph) G2 = build_graph(K, n_pca=None, precomputed="affinity", random_state=42, use_pygsp=True) assert G.N == G2.N np.testing.assert_equal(G.dw, G2.dw) assert (G.W != G2.W).nnz == 0 assert (G2.W != G.W).sum() == 0 assert isinstance(G2, graphtools.graphs.TraditionalGraph) G2 = build_graph(W, n_pca=None, precomputed="adjacency", random_state=42, use_pygsp=True) assert G.N == G2.N np.testing.assert_equal(G.dw, G2.dw) assert (G.W != G2.W).nnz == 0 assert (G2.W != G.W).sum() == 0 assert isinstance(G2, graphtools.graphs.TraditionalGraph)
def test_truncated_exact_graph_sparse(): k = 3 a = 13 n_pca = 20 thresh = 1e-4 data_small = data[np.random.choice(len(data), len(data) // 2, replace=False)] pca = TruncatedSVD(n_pca, random_state=42).fit(data_small) data_small_nu = pca.transform(data_small) pdx = squareform(pdist(data_small_nu, metric="euclidean")) knn_dist = np.partition(pdx, k, axis=1)[:, :k] epsilon = np.max(knn_dist, axis=1) weighted_pdx = (pdx.T / epsilon).T K = np.exp(-1 * weighted_pdx**a) K[K < thresh] = 0 W = K + K.T W = np.divide(W, 2) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph( sp.coo_matrix(data_small), thresh=thresh, graphtype="exact", n_pca=n_pca, decay=a, knn=k - 1, random_state=42, use_pygsp=True, ) assert G.N == G2.N np.testing.assert_allclose(G2.W.toarray(), G.W.toarray()) assert isinstance(G2, graphtools.graphs.TraditionalGraph) G2 = build_graph( sp.bsr_matrix(pdx), n_pca=None, precomputed="distance", thresh=thresh, decay=a, knn=k - 1, random_state=42, use_pygsp=True, ) assert G.N == G2.N np.testing.assert_equal(G.dw, G2.dw) assert (G.W != G2.W).nnz == 0 assert (G2.W != G.W).sum() == 0 assert isinstance(G2, graphtools.graphs.TraditionalGraph) G2 = build_graph( sp.lil_matrix(K), n_pca=None, precomputed="affinity", thresh=thresh, random_state=42, use_pygsp=True, ) assert G.N == G2.N np.testing.assert_equal(G.dw, G2.dw) assert (G.W != G2.W).nnz == 0 assert (G2.W != G.W).sum() == 0 assert isinstance(G2, graphtools.graphs.TraditionalGraph) G2 = build_graph( sp.dok_matrix(W), n_pca=None, precomputed="adjacency", random_state=42, use_pygsp=True, ) assert G.N == G2.N np.testing.assert_equal(G.dw, G2.dw) assert (G.W != G2.W).nnz == 0 assert (G2.W != G.W).sum() == 0 assert isinstance(G2, graphtools.graphs.TraditionalGraph)
def test_mnn_graph_decay(): X, sample_idx = generate_swiss_roll() theta = 0.9 k = 10 a = 20 metric = "euclidean" beta = 0.2 samples = np.unique(sample_idx) K = np.zeros((len(X), len(X))) K[:] = np.nan K = pd.DataFrame(K) for si in samples: X_i = X[sample_idx == si] # get observations in sample i for sj in samples: batch_k = k if si == sj else k - 1 X_j = X[sample_idx == sj] # get observation in sample j pdx_ij = cdist(X_i, X_j, metric=metric) # pairwise distances kdx_ij = np.sort(pdx_ij, axis=1) # get kNN e_ij = kdx_ij[:, batch_k] # dist to kNN pdxe_ij = pdx_ij / e_ij[:, np.newaxis] # normalize k_ij = np.exp(-1 * (pdxe_ij ** a)) # apply alpha-decaying kernel if si == sj: K.iloc[sample_idx == si, sample_idx == sj] = (k_ij + k_ij.T) / 2 else: # fill out values in K for NN on diagonal K.iloc[sample_idx == si, sample_idx == sj] = k_ij Kn = K.copy() for i in samples: curr_K = K.iloc[sample_idx == i, sample_idx == i] i_norm = norm(curr_K, 1, axis=1) for j in samples: if i == j: continue else: curr_K = K.iloc[sample_idx == i, sample_idx == j] curr_norm = norm(curr_K, 1, axis=1) scale = np.minimum(1, i_norm / curr_norm) * beta Kn.iloc[sample_idx == i, sample_idx == j] = ( curr_K.values * scale[:, None] ) K = Kn W = np.array((theta * np.minimum(K, K.T)) + ((1 - theta) * np.maximum(K, K.T))) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = graphtools.Graph( X, knn=k, decay=a, beta=beta, kernel_symm="mnn", theta=theta, distance=metric, sample_idx=sample_idx, thresh=0, use_pygsp=True, ) assert G.N == G2.N np.testing.assert_array_equal(G.dw, G2.dw) np.testing.assert_array_equal((G.W - G2.W).data, 0) assert isinstance(G2, graphtools.graphs.MNNGraph)
def test_exact_graph(): k = 3 a = 13 n_pca = 20 data_small = data[np.random.choice(len(data), len(data) // 2, replace=False)] pca = PCA(n_pca, svd_solver='randomized', random_state=42).fit(data_small) data_small_nu = pca.transform(data_small) pdx = squareform(pdist(data_small_nu, metric='euclidean')) knn_dist = np.partition(pdx, k, axis=1)[:, :k] epsilon = np.max(knn_dist, axis=1) weighted_pdx = (pdx.T / epsilon).T K = np.exp(-1 * weighted_pdx**a) W = K + K.T W = np.divide(W, 2) np.fill_diagonal(W, 0) G = pygsp.graphs.Graph(W) G2 = build_graph(data_small, thresh=0, n_pca=n_pca, decay=a, knn=k, random_state=42, use_pygsp=True) assert (G.N == G2.N) assert (np.all(G.d == G2.d)) assert ((G.W != G2.W).nnz == 0) assert ((G2.W != G.W).sum() == 0) assert (isinstance(G2, graphtools.graphs.TraditionalGraph)) G2 = build_graph(pdx, n_pca=None, precomputed='distance', decay=a, knn=k, random_state=42, use_pygsp=True) assert (G.N == G2.N) assert (np.all(G.d == G2.d)) assert ((G.W != G2.W).nnz == 0) assert ((G2.W != G.W).sum() == 0) assert (isinstance(G2, graphtools.graphs.TraditionalGraph)) G2 = build_graph(sp.coo_matrix(K), n_pca=None, precomputed='affinity', random_state=42, use_pygsp=True) assert (G.N == G2.N) assert (np.all(G.d == G2.d)) assert ((G.W != G2.W).nnz == 0) assert ((G2.W != G.W).sum() == 0) assert (isinstance(G2, graphtools.graphs.TraditionalGraph)) G2 = build_graph(K, n_pca=None, precomputed='affinity', random_state=42, use_pygsp=True) assert (G.N == G2.N) assert (np.all(G.d == G2.d)) assert ((G.W != G2.W).nnz == 0) assert ((G2.W != G.W).sum() == 0) assert (isinstance(G2, graphtools.graphs.TraditionalGraph)) G2 = build_graph(W, n_pca=None, precomputed='adjacency', random_state=42, use_pygsp=True) assert (G.N == G2.N) assert (np.all(G.d == G2.d)) assert ((G.W != G2.W).nnz == 0) assert ((G2.W != G.W).sum() == 0) assert (isinstance(G2, graphtools.graphs.TraditionalGraph))